

Assessing the detectability of optical afterglows of short gamma-ray bursts by ground-based facilities in the THESEUS era

> Lána Salmon University College Dublin

L. Hanlon, A. Martin-Carrillo, G. Stratta, R. Ciolfi

THESEUS Conference, March 24th 2021

Short Gamma-Ray Bursts

GRB170817A

- structured jet/cocoon
- o kilonova

GRB170817A

How many short GRBs will THESEUS detect?

Unambiguous host galaxy detection

How many short GRBs will THESEUS detect?

• Large number of galaxies is challenging for host identification

How many short GRBs will THESEUS detect?

- Galaxy catalogues are incomplete
- Multi-Object Spectrographs like WEAVE (WHT) and surveys like LSST will help
- Ground-based afterglow detection can help

Results from the MOS, credit A. Rocchi, ESA

Recover redshift on the ground

• Aim : determine fraction of optical afterglows observable by ground-based facilities

- Afterglowpy
 - Python package for calculating GRB afterglows in the forward shock model (Ryan et al. 2019)

1. Energy

lacksquare

10

lacksquare

• Median values from Fong et al. 2015

Parameter	Value
р	2.43
٤ _e	0.1
ε _B	0.1
n	$2.9 \times 10^{-3} \text{ cm}^{-3}$

4. Geometry

- Top-hat jet
- Skew-normal distribution from 2-10 degrees
- Peaking at 5 degrees (median from Fong et al. 2015)

4. Geometry

• 3 viewing angle scenarios

4. Geometry

Simulated Light Curves

On-Axis

Within jet

Outside jet

Simulated Light Curves

Simulated Light Curves

Within jet Outside jet On-Axis Time since trigger (hrs) Time since trigger (hrs) Time since trigger (hrs) 0.50 1.00 0.05 0.10 0.50 1.00 6.00 12.0018.00 0.05 0.10 6.00 12.0018.00 0.05 0.10 0.50 1.00 Simulated LC 14 Simulated LC Simulated LC 14 14 Median Median Median 16 16 16 Fong et al. (2015) Fong et al. (2015) Fong et al. (2015) 18 18 18 AB mag 55 AB AB mag 55 AB 20 20 4B 72 24 24 24 26 26 26 28 28 -28 30 30 · 30 1.0 10.0 70.0 70.0 0.2 0.2 1.0 10.0 0.2 1.0 10.0 Time since trigger(ks) Time since trigger(ks) Time since trigger(ks)

70.0

6.00 12.0018.00

Quantify ground-based successful follow-up

Photometric limits

On-Axis

Within jet

Outside jet

Spectroscopic limits

On-Axis

Within jet

Outside jet

Fraction of Detectable Afterglows - Photometric

Spectroscopic fractions

Fraction of LCs above limiting magnitude

24

12.0018.00

70.0

Photometric limits - 30s integration

Photometric limits - 1 hour integration

Spectroscopic results - 1 hour integration

Conclusions

- Ground-based follow-up will significantly increase the sample size of THESEUS' short GRBs with redshift
- Results from the MOS, credit A. Rocchi, ESA

