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Collapsar scenario Magnetar scenario

— iron core — collapse — iron core — collapse
— supernova is weak (’failed’) — supernova is successful
i.e. compactness parameter § is large i.e. compactness parameter & is small
— material falls in - BH — material expelled —» NS
— fast rotation — accretion disc — fast rotating, magnetized NS
— jet » LGRB powers the jet = LGRB
Woosley’93, Macfadyen+99, MacFadyen+01, Metzger+11,

Yoon+05, Woosley+06 Rowlinson+13, Greiner+15



Question:

What kind of star would die this way?

...task for stellar physicists!
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classical Wolf-Rayet stars?

* no large envelope ... spin down due to strong mass loss
— jet should be able to NO.
penetrate through!
e fast rotation at the Chemically
moment of collapse Homogeneous

. . Evolution
® 1ron core... massive star

(low metallicity)
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ABSTRACT
Those massive stars that give rise to gamma-ray bursts (GRBs) during their deaths must be endowed with an un-
usually large amount of angular momentum in their inner regions, 1-2 orders of magnitude greater than the ones that
make common pulsars. Yet the inclusion of mass loss and angular momentum transport by magnetic torques during
the precollapse evolution is known to sap the core of the necessary rotation. Here we explore the evolution of very
rapidly rotating massive stars, including stripped-down helium cores that might result from mergers or mass transfer
in a binary, and single stars that rotate unusually rapidly on the main sequence. For the highest possible rotation rates
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Low Metallicity Massive Stars

Szécsi et al. 2015 (Astronomy & Astrophysics, v.581, A15)
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/’ very
dilute envelope
-

Normal OB-star:

T~15000K

TWUIN star:  TWUIN binary:
uv
T el
uvN L
no uv
core- mass-
env.
structure exchange!

T~ 80000 K



Dorottya Szécsi:

GW/SGRB progenitors: 3 theories New vision

for THESEUS

Chemically-
Common envelope homogeneous Dynamics in
in a binary evolution dense clusters
in a binary

e.g. Vigna-Gomez..Szécsi+18; Szécsi’17a,b; Szécsi&Wiinsch’'18
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Chemically-
Common
homogeneous
envelope .
. ; evolution
in a binary . )
in a binary

Dynamics in
dense
clusters

for THESEUS

Metal-poor massive stars

e.g. Vigna-Gomez..Szécsi+18; Szécsi’17a,b; Szécsi&Wiinsch’'18; Szécsi’16;




GRB progenitors

Common
envelope
in a binary

*9

Chemically-
homogeneous
evolution
in a binary

S-GRBs

Dorottya Szécsi:
New vision
for THESEUS

- Metal-poor massive stars

Dynamics in
dense
clusters

*o

Chem.-hom. Chem.-hom.
evolution evolution
as single star in a binary

L-GRBs






Dorottya Szécsi:

Are they observed? New vision
for THESEUS
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Dorottya Szécsi:

Are they observed? New vision
for THESEUS
LMC SM d .
MW Zo C% waltg.ze  Pop Il
: o
z | | | |
>800 ~300 ~150 ~10 0
spectroscopy

(i.e. direct evidence)

GRB-progenitors theories...

e.g. Castro+14,+18, Ramirez-Agudelo+17, Kubatova&Szécsi+18
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Number of events
per redshift
#(GRB)/z

Chenmically Homogeneous Evolution (CHE)

Transparent Wind Ultraviolet INtense
(TWUIN) stars.
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Cosmic Stru g i e

Horvath, Szécsi ... Szabb et al. (2020, MRNAS) - .-
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