GROUND-BASED GRAVITATIONAL-WAVE OBSERVATORIES

Gran Sasso Science Institute INFN/LNGS and INAF

A new window into the Universe

Strain sensitivities as a function of frequency

Abbott et al. 2020, LRR

Observing run timeline and BNS sensitivity evolution

O5 volume = 15*O3 volume

Abbott et al. 2020, LRR

Radioactively powered transients

What is the future of the GW astrophysics?

The European 3G concept

Europe we developed the idea of a 3G GW observatory

- Factor 10 better (x1000 Volume) than 2G detectors
- Wide frequency, with special attention to low frequency (few HZ)
- Capable to work alone (but aiming to be in a 3G network)

. . .

• 50-years lifetime of the infrastructure

Triangular shape Arms: 3 → 10 km Underground Cryogenic increase laser power Xylophone

ESFRI proposal submitted in September

3G effort worldwide

NSF funded in 2018 the Conceptual Design Study of a 3G facility: Cosmic Explorer: 40km – L shaped detector

EXPECTED SENSITIVITY

The ET exquisite sensitivity and wide frequency band will make it possible:

• Large distances back to the early Universe

Detection horizon for black-hole binaries

The ET exquisite sensitivity and wide frequency band will make it possible:

- Large distances back to the early Universe
- access unexplored mass up to 10³ Mo

courtesy Colpi and Mangiagli

The ET exquisite sensitivity and wide frequency band will make it possible:

- Large distances back to the early Universe
- access unexplored mass up to 10³ Mo
- benefit of exceptional parameter estimation accuracy for very high SNR events

3G Science case WP

ET will provide a wealth of data that have the potential of triggering revolutions in astrophysics, cosmology and fundamental physics

A summary of the Science of ET

(see Maggiore et al. 2020)

Astrophysics

- Black hole properties
- origin (stellar vs. primordial)
- evolution, demography
- Neutron star properties
- interior structure (QCD at ultra-high densities, exotic states of matter)
- demography
- Multi-band and -messenger astronomy
- joint GW/EM observations (GRB, kilonova,...)
- multiband GW detection (LISA)
- neutrinos
- Detection of new astrophysical sources
- core collapse supernovae
- isolated neutron stars
- stochastic background of astrophysical origin

Fundamental physics and cosmology

- The nature of compact objects
- near-horizon physics
- tests of no-hair theorem
- exotic compact objects
- Tests of General Relativity
- post-Newtonian expansion
- strong field regime
- Dark matter
- primordial BHs
- axion clouds, dark matter accreting on compact objects
- Dark energy and modifications of gravity on cosmological scales
- DE equation of state
- modified GW propagation
- Stochastic backgrounds of cosmological origin

THE UNEXPECTED...ET will be a "discovery observatory"!

Multi-messenger in the ET era

Binary systems of Compact Objects

Large increase of detection rate

Better parameter estimation

 \bullet

 \bullet

 \circ

ET capabilities

Astrophysical simulations for BNS from population synthesys code

MERGER RATE EVOLUTION impact of SFR and metallicity uncertainty

Santoliquido et al. 2020,

ET DETECTION EFFICIENCY

ALL ORIENTATION

EINSTEIN TELESCOPE DETECTION/SKY LOCALIZATION up to z=0.26

ΕT

ET+LIGO/Virgo/KAGRA/LIGOindia

ET SNR>12 and LKVI included when SNR > 4

1 year of observations

Up to z=0.26

- Among ~4000 mergers per year detected 3000 per year
- For ET 100 per year have sky loc < 10 sq. degrees
 - For ET+LVKI 1000 per year have sky loc < 10 sq. degrees
- For ET+LVKI 100 per year have sky loc < 1 sq. degrees

EINSTEIN TELESCOPEDETECTION/SKY LOCALIZATION up to z=1.8 =T ET+CE

1 week of observations

For ET+ CE 100 per week have sky loc < 10 sq. degrees

At z larger than 0.2 sky-localization from GRBs!

Thermal and non thermal emission components associated with BNS and NSBH merger

Ascenzi et al. 2020 arXiv:2011.04001

Ghirlanda

THERMAL EMISSION - KILONOVAE

OPTICAL BAND

- Too faint counterpart
- Large sky-localization/many contaminants

Joint detections for ET limited by optical instruments capabilities!!

Kilonovae detectable by the Vera Rubin Observatory survey up to 1 Gpc

In this volume

- ET about 100 event per year have sky loc < 10 sq. degrees
- For ET+LVKI 10³ per year have sky loc < 10 sq. degrees

A few tens to a few hundreds joint detections!

Three epochs of VRO 300s ToO observations in two filters (as in Chen et al. 2020)

HIGH-ENERGY

- GRB detectable up to high z
- Small number of contaminants
- Promising wide FoV hard-soft Xray instruments
- Good sky localization to drive a prompt EM follow-up

See Giulia Stratta talk

ET, ET+CE, ET+CE+CE

THESEUS in Multi-Messeger context

15

V Sky and

GW detectors	THESEUS+GW detectors plausible joint observation time	aligned short GRB+GW detections	aligned & misaligned short GRB+GW detections
2G network z<0.107 (500 Mpc)	3.45 yr	~0.04	1.8
ET	1 yr (3.45 yr)	5.6 (19.2)	13 (46)
ET+CE	1 yr (3.45 yr)	7.4 (25.7)	16 (55)
ET+2CE	1 yr (3.45 yr)	8.7 (30.1)	18 (61)

Credit THESEUS Yellow Book

OTHER PROMISING HIGH-ENERGY COUNTERPARTS for SXI (0.5- 5 KeV sky loc < 1-2'

Magnetar? or

High latitude emission from structured jet?

What happen off-axis?

Ascenzi et al. 2020 A&A

Promising X-ray couterparts!

THESEUS AND ET as multi-probes of the early Universe

Disentangle astrophysical PoPIII from primordial BHs

De Luca et al. 2102.03809

Any BBH merger at z>30 will be of primordial origin

- Difference between ET and CE due to the better ET sensitivity at low frequencies
- Note: accurate measurement of z is also needed !

Cosmology and dark energy with ET

Modified GW propagation

Coalescing binaries measure a ``GW luminosity distance" different from the standard (electromagnetic) luminosity distance !

PARAMETRIZATION OF MODIFIED GW PROPAGATION

$$\frac{d_L^{\,\rm gw}(z)}{d_L^{\,\rm em}(z)} = \Xi_0 + \frac{1 - \Xi_0}{(1 + z)^n}$$

This parametrization is very natural, and fits the result of (almost) all modified gravity models

Belgacem et al.

PRD 2018, 1712.08108 PRD 2018, 1805.08731 JCAP 2019, 1907.02047

• Standard sirens in Giulia Stratta talk

Ratio of the gravitational to electromagnetic luminosity distance in a modified gravity model

Modified gravity models: the counterpart could be at a different distance with respect to luminosity distance from the GWs!

GW/EM the same travel time \rightarrow temporal EM/GW coincidence

Belgacem et al. JCAP 2019, 1907.02047

- JOINT GW/GRB detections
- Small error in dL^{GW}
- High z

Belgacem et al. JCAP 2019, 1907.02047

→ Large effect could be detectable even with just a single standard siren at ET

Few hundreds of joint GW-GRB detection $\rightarrow \Delta \Xi_0 / \Xi_0 \approx 1\%$ or better

⇒ GWs could become the best experiments for studying dark energy!

Expected brilliant synergy!