Enlightening cosmic dark ages with GRBs

by R. Salvaterra (INAF/IASF-MI)

why GRBs?

GRBs provide a complementary (sometime unique) tool to study the high-z Universe

high-z GRBs are 1% of the observed GRBs but ~10% of the entire population

Salvaterra et al. 2012, Ghirlanda et al. 2015

why GRBs?

GRBs provide a complementary (sometime unique) tool to study the high-z Universe

high-z GRBs are 1% of the observed GRBs but ~10% of the entire population

Salvaterra et al. 2012, Ghirlanda et al. 2015

\Box ISM metals and dust

- 🗆 reionization (Gallerani et al. 2008; McQuinn et al. 2008; Xu et al. 2011)
- 🗆 escape fraction (Chen et al. 2007; Fynbo et al. 2009, Tanvir et al. 2018)
- \Box identify and study high-z galaxies responsible for the reionization
- □ constrain the high-z SFR slope and faint-end of the galaxy LF
- □ direct detection of PopIII stars (Komissarov & Barkov 2009; Mezsaros & Rees 2010; Toma et al. 2011; Campisi et al. 2011; deSouza et al. 2011 ...)
- □ indirect PopIII detection (Ma et al. 2015, 2017; Wang et al. 2012)
- \Box probe the intergalactic radiation field (Inoue et al. 2010)
- □ constraints on DM (Mesinger et al. 2005, deSouza et al. 2013)
- □ primordial non-Gaussianity (Maio et al. 2012)

□...

GRB-SN connection

Long GRBs are firmly associated with the death of a massive star by the detection of a type Ib,c SN in low-z events

SN2013cq associated to GRB 130427A a low-z analogue to cosmological GRBs suggesting that GRBs can be used as tracers of SFR

Melandri et al. 2014

metal bias

GRB host galaxy properties and population studies suggest a mild metallicity threshold implying that GRBs are good tracer of SF at high-z

recovering the high-z SFR slope

a slope consistent with MD14 can be recovered with an error of ~0.1 (1 sigma)

Tanvir et al. 2021 - Theseus WP

searching for high-z hosts

the knowledge of position and redshift allows very deep search for the GRB host

for GRB 090423 at z=8.2 deep HST/ WFC3 (m_J>30.3), Spitzer and ALMA observations provide a strong limit on host brightness and SFR

Tanvir et al. 2012; Basa et al. 2012; Berger et al. 2014, McGuirre et al. 2016, Vergani et al. in prep

high-z host physical properties

we use the state-of-the art of numerical simulation of structure formation at high-z including all relevant physical process (e.g. chemical, mechanical and radiative feedback)

high-z hosts are expected to have low masses (10⁶-10⁸ M_{\odot}), high sSFRs and Z~0.05 Z_{\odot}

Salvaterra et al. 2013

constraining the galaxy LF faint-end

HST Frontier Fields LF

other high-z biases? IMF variation

High-z GRB population results can be compared with other high-z SFR measurements (e.g. JWST) to highlight the existence of other biases.

Chon et al. 2021

PopIII GRBs

shock breakout is possible even in a massive, metal-free PopIII stars with a large H envelope thanks to the long-lived powerful accretion onto the forming central BH see e.g. Fryer et al. (2001), Heger et al. 2003, Suwa et al. 2007, Komissarov & Barkow (2010), Meszaros & Rees (2010), Suwa & Ioka (2011), Toma et al. (2011), Nagakura et al. 2012, Piro et al. 2014 ...

Suwa & Ioka 2011, Nagakura et al. 2012

PopIII GRB rate

given that none of Swift detected GRBs is likely to be associated to a PopIII progenitor we can set an upper limit to their rate (assuming that Swift is able to catch them!)

PopIII GRBs are rare (<10% of all detectable GRBs at z=6), i.e. <1 every 500 PopIII stars but they might dominate at z>10-12

[vs 1 PopII/I GRB every 300 SNIb/c (Ghirlanda et al. 2013a)]

Campisi et al. 2011, Kinugawa et al. 2018

indirect search for PopIII stars

we compute the expected rate of PopII GRB exploding in a gas enriched by PopIII stars

we expect GRB $_{II \rightarrow III}$ to be ~10% of z=10 PopII GRBs

Ma et al. 2015

inferring PopIII IMF

GRB 050904 and 130606A abundance ratios are consistent with PopII SN enrichment

Ma et al. 2016

conclusions

the future of cosmic dark ages is bright

Text