

## **THESEUS** role in **Multi-Messenger Astrophysics**

Giulia Stratta (INAF-OAS, INFN-Firenze) Riccardo Ciolfi (INAF-OAP,INFN-Padova)

+ THESEUS Working Group 2

THESEUS Conference 23-26 March 2021

See Assessment Study Report (aka "Yellow Book") on ESA wepages

8

MMA is one of the three

top Level Science

Requirements of the

THESEUS mission

new White Paper by Ciolfi, Stratta et al. 2021 in prep.

#### Outline

>2030: the golden era of MMA and the role of THESEUS

#### **Expected NS-NS/NS-BH e.m. counterparts for THESEUS**

Other GW sources and neutrino sources for THESEUS

Conclusions

#### 2020s: the dawn of multimessenger astronomy

**22 September 2017:** HE neutrino detection with IceCube was found spatially coincident with a  $\gamma$ -ray emitting blazar in active phase

**17 August 2017**: first joint GW+EM detection from a NS-NS merger (Abbott+2017, ApJL 848, L13)

discoveries

**Recent breakthrough** 



Declination [°]



#### 2030s: the golden era of MMA



Credit: U. Katz

Neutrino detector will improve sensitivity of ~O(10) —> will collect high-statistics HE neutrino sample

#### 2030s: the golden era of MMA



Next generation GW detectors will be O(10) more sensitive than 2G



2G GW interferometer network by 2025 with Virgo+ and A+



#### 2030s: the golden era of MMA



THESEUS synergy with future GW and neutrino facilities, will allow for fundamental and transformational knowledge on multimessenger sources

#### THESEUS role in MMA

- Independent detection of the electromagnetic counterpart of neutrino and/or GW —> increase statistical confidence of astrophysical nature of GW or v event
- Autonomous source characterization and identification (large spectral coverage of onboard instrumentations, from γ-rays to NIR)
- Accurate sky coordinate dissemination —> follow-up campaigns with large facilities of 2030s as ELT, Athena, SKA,CTA, etc.



#### 3G GW detector sky localization uncertainty



Large FoV are mandatory to allow MM observations during the 2030s

#### 3G GW detector sky localization uncertainty



HE surveyors are the best instruments to pinpoint MMA sources

#### THESEUS MM targets

- Short GRBs
- Core-collapsing stars
- Soft Gamma Repeaters
- AGNs
- Starburst galaxies
- Unexpected transients...



#### THESEUS short GRBs

✓THESEUS will detect and localize 12.0+/-1.9 short GRB per year with XGIS (2-150 keV) and SXI (0.3-5 keV)

- ✓ These short GRB will be localized in the sky with an accuracy of:
- •better than 15' (90%) and 7' (50%) with XGIS
- •better than 2' with SXI (0.3-4 keV)
- ✓ 3.0 +/- 0.8 short GRB (25%) are expected to be detected per year also with the onboard IR telescope and localized down to the arcsecond level



Once a short GRB is detected, an automatic slew is initiated in order to place the transient within the IRT FoV. IRT will acquire a sequence of images in different filters

#### THESEUS short GRBs: joint GW detections



#### THESEUS short GRBs: joint GW detections



#### THESEUS short GRBs: joint GW detections



Credit: J. Harms, M. Branchesi, S. Grimm

#### Fundamental issues from short GRB+GW detections

What is the jet Launching mechanism and its efficiency?



#### **THESEUS** misaligned GRB detection capabilities



Ascenzi et al. 2020

Ejecta

Tidal Ejecta

# THESEUS short GRBs including off-axis viewing angles



Credit: J. Harms, M. Branchesi, S. Grimm

#### Fundamental issues from short GRB+GW detections



#### A new independent measure of $H_0$



LVC, Nature 2017, 551, 85

- The statistical significant sample of CBC that THESEUS will detect jointly with 3G interferometers can be used to measure the Hubble constant with high precision
- So far the first measure of H0 by combining GW luminosity distance and redshift, was obtained with GW170817 with poor accuracy (e.g. Abbott+17, Guidorzi+17, Hotokezaka+18)
- To solve the current tension ~1% precision level in required

#### A new independent measure of H<sub>0</sub>



 We start from the predicted ΔH<sub>0</sub>/H<sub>0</sub> from mock catalogs of NS-NS mergers and assuming 10yrs of observations of THESEUS+ET(+2CE) (Belgacem et al. 2019)

We rescaled ΔH<sub>0</sub>/H<sub>0</sub> to expected values with joint GW+short GRB detection with measured z (~ 60% aligned + ~10% misaligned) in 1 up to 4 years

We find ΔH<sub>0</sub>/H<sub>0</sub>~1% with ~1 yrs of synergies with ET+2CE or ~4 yrs with ET only

Possible further improvements:

- combining e.m.+GW data analysis (i.e. better constraints on off-axis angles & luminosity distance)
- adding potentially numerous "short GRB-less" X-ray transients from CBCs

## Additional science from joint short GRB + GW detections: the origin of short GRB "Extended Emission" and of X-ray plateaus



—> GW could contribute to the identification of a long-lived magnetar remnant

## Additional science from joint short GRB + GW detections: the origin of short GRB "Extended Emission" and of X-ray plateaus



—> GW could contribute to the identification of a long-lived magnetar remnant

#### Additional science from joint short GRB + GW detections: the origin of short GRB "Extended Emission" and of X-ray plateaus



#### Kilonovae

- Thermal emission following a NS-NS/NS-BH merger powered by radiactive decay of freshly formed, instable heavy nuclei
- AT2017gfo is the best monitored kilonova so far associated with NS-NS merger source GW 170817
- THESEUS/IRT can detect a kilonova AT2017gfolike after a short GRB up to few x 100 Mpc
  - Monitoring KN candidates localized by other facilities
  - Discovery KN after a short GRB or an Xray transient from long-lived magnetar





### Other high-frequency GW sources

**THESEUS WP Stratta+18** 

★ CC-SNe can emit GWs but their detectability is much more uncertain than for CBC sources

- Shock Break Out See L. Izzo talk tomorrow
- Long GRB / Low Luminosity GRB / ultra-long GRB
- Promising GW signals may come from newly-formed compact object
  - In case of a newly-born long-lived magnetar, isotropic spin down powered transients can be detected in soft X-rays (e.g. Metzger+2014, Siegel+2016)
- ★ magnetar instability phenomena that can generate detectable GW in our Galaxy and possibly beyond (e.g., Corsi and Owen, 2011, Ciolfi et al., 2011)
- Soft Gamma Repeaters See more during Session 7 tomorrow morning



| Ultra   | Duration | Duratio  | Z     | z_max  | z_max  | z_max    |
|---------|----------|----------|-------|--------|--------|----------|
| long    | (T90,s)  | n (Tx,s) |       | prompt | prompt | afterglo |
| GRBs    |          |          |       | (XGIS) | (SXI)  | w (SXI)  |
| 101225A | >2000    | 5300     | 0,847 | -      | 1.5    | 0.1      |
| 111209A | 25000    | 25400    | 0,677 | 0.4    | >3     | 0.3      |
| 121027A | >6000    | 8000     | 1.77  | 1.7    | >3     | 1.0      |
| 130925A | 4500     | 10000    | 0.35  | 0.7    | >3     | 0.6      |
| 170714A | 420      | 16600    | 0,793 | 0.5    | >3     | 0.4      |
|         |          |          |       |        |        |          |

Credit: B.Gendre, A.McCann

#### The role of THESEUS in Neutrino Astronomy

- # HE v are unique signature of accelerated hadrons at the source and allow to identify the most extreme accelerators in the Universe possibly originating UHCRs
- \* Among the best cosmological v source targets for THESEUS there are:
  - GRBs
  - AGN
  - star-forming galaxies (as calorimeters of v sources)
- So far, no v detections from GRBs —> constraints on energy transferred to baryons in the acceleration process and on the bulk jet Lorentz factor —> soft/ faint GRBs may be more suitable targets



 $\xrightarrow{\Delta^+} \left\{ \begin{array}{c} p + \pi^0 \\ n + \pi^+ \end{array} \right. \longrightarrow$ 



### **External triggers**

THESEUS is also designed to rapidly respond to triggers that are provided by other facilities

The time required to re-point THESEUS toward a specific direction is >4 hours after the trigger

Number of external triggers defined as mission science requirement is: 3/month Some examples of THESEUS external triggers

#### Neutrino alert:

- flaring AGNs
- starburst galaxies within v

#### GW source alert:

 kilonova candidate localized by other facilities

#### Conclusions

- THESEUS expected launch date on 2032 and lifetime of at least 4 years is **perfectely** on time to work in synergy with next generation GW and neutrino detectors which will provide high detection rates
- THESEUS capabilities of independently detect the e.m. counterpart and characterize its nature will be crucial for the identification of multi-messenger sources during the 2030s
- THESEUS accurate source sky localization capabilities will allow MW follow-up campaigns with next generation facilities as ELT, Athena, SKA, CTA, etc. ultimately increasing the scientific output of each facility in the framework of multi-messenger astrophysics



Additional science from joint sort GRB + GW detections: the origin of short GRB "Extended Emission" and of X-ray plateaus



Credit: A. Martin-Carrillo

#### GRB 170817A-like jet afterglows

assuming Ghirlanda+2019 jet structure (model Salafia+2019)

$$E(\theta) = \frac{E_{\rm c}}{1 + (\theta/\theta_{\rm c})^{5.5}} \qquad E_{\rm c} = 2.51^{+7.49}_{-2.01} \times 10^{52} \,{\rm erg} \qquad n = 5 \times 10^{-3} \,{\rm cm}^{-3}$$
  

$$\Gamma(\theta) = 1 + \frac{\Gamma_{\rm c} - 1}{1 + (\theta/\theta_{\rm c})^{3.5}} \qquad \theta_{\rm c} = 251 \qquad p = 2.15$$
  

$$\theta_{\rm c} = 3^{\circ}.4 \qquad \sqrt{\varepsilon_B} = 0.1$$

Predicted X-ray max flux as a function of the source distance and inclination angle



#### GRB 170817A-like jet afterglows

Figure by Gavin Lamb

