

Synergy of THESEUS with ELT, TMT and large optical/NIR facilities of the future

S. BASA (Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France)

25th of March, 2021

The extra large telescopes are coming

ELT: European Extremely Large Telescope

Project under ESO leadership:

- 39-m segmented M1 (1300 m² !).
- 4.2-m monolithic & active M2 mirror.
- 2.5-m adaptive M4 & M5 .
- Site: Cerro Armazones, Chile.
- Completion: 2026 (2027?).
- Cost: ~ 1200 M€

ELT: European Extremely Large Telescope

The coming of age of Laser guide Star

• Lasers generate artificial stars in the upper atmosphere through backscattering of the laser photons.

A very complete instrumentation

Even if the dates are a "little" optimistic, by the time of Theseus, ELT observations will have begun:

- 2027-2028 for MICADO, HARMONI & METIS.
- > 2030 for HIRES & MOSAIC

	Instrument	Main specifications			Schedule				
		Field of view/slit length/ pixel scale	Spectral resolution	Wavelength coverage (µm)	Phase A	Project start	PDR	FDR	First light
ア	MICADO	Imager (with coronagraph) 50.5' × 50.5' at 4 mas/pix 19' × 19' at 1.5 mas/pix	I, Z, Y, J, H, K + narrowbands	0.8–2.45	2010	2015	2019		
		Single slit	<i>R</i> ~ 20000						
	MAORY	AO Module SCAO – MCAO		0.8–2.45	2010	2015	\sum		
カ	HARMONI + LTAO	IFU 4 spaxel scales from: $0.8'' \times 0.6''$ at 4 mas/pix to $6.1'' \times 9.1''$ at 30 × 60 mas/pix (with coronagraph)	R ~ 3200 R ~ 7100 R ~ 17 000	0.47–2.45	2010	2015	2018		
	METIS	Imager (with coronagraph) 10.5" × 10.5" at 5 mas/pix in <i>L</i> , <i>M</i> 13.5" × 13.5" at 7 mas/pix in <i>N</i>	<i>L, M, N</i> + narrowbands	3–13					
		Single slit	R ~ 1400 in L R ~ 1900 in M R ~ 400 in N		2010	2015	2019		
-		IFU 0.6" × 0.9" at 8 mas/pix (with coronagraph)	<i>L</i> , <i>M</i> bands <i>R</i> ~100 000						
	HIRES	Single object	- R~100000	0.4–1.8 simultaneously					
		IFU (SCAO)			2018	>	>	>	\succ
		Multi object (TBC)	<i>R</i> ~10000						
	MOSAIC	~7-arcminute FoV ~200 objects (TBC)	<i>R</i> ~ 5000–20000	0.45–1.8 (TBC)	2018				
		~8 IFUs (TBC)	<i>R</i> ~ 5000–20000	0.8–1.8 (TBC)					
	PCS	Extreme AO camera and spectrograph	TBC	TBC					

A very complete instrumentation

TMT: Thirty Meters Telescope

Project led by Caltech + Univ. California + Canada + China + India + Japan:

- · 30-m diameter.
- Site Hawaii (alternate site: Canary Is. / La Palma).
- Construction halted in 2015.
- · Completion: TBD.
- Cost: ~ 1500 M\$

With also a very complete instrumentation

	Instrument	λ (μm)	Field of view/ Slit length	Spectral resolution	Science Cases
7	InfraRed Imager and Spectrometer (IRIS)	0.8 – 2.5 0.6 – 5 (goal)	<3″ IFU >15″imaging	> 3500 5-100 (imaging)	 Assembly of galaxies at high z Black holes/AGNs/Galactic Center Resolved stellar populations in crowded fields
	Wide-field Optical spectrometer and imager (WFOS)	0.31 – 1.0	>40 arcmin ² >100 arcmin ² (goal) Slit length>500″	1000- 5000@0.75′′ slit >7500 @0.75′′ (goal)	 IGM structure and composition at 2 < z < 6 Stellar populations, chemistry and energetics of z > 1.5 galaxies
	InfraRed Multislit Spectrometer (IRMS)	0.95 – 2.45	2 arcmin field, up to 120'' total slit length with 46 deployable slits	R=4660 @ 0.16 arcsec slit	 Early Light Epoch of peak galaxy building JWST follow-ups
	Deployable, multi-IFU, near-IR spectrometer (IRMOS)	0.8 – 2.5	3″ IFUs over >5′ diameter field	2000-10000	 Early Light Epoch of peak galaxy building JWST follow-ups
	Mid-IR AO-fed Echelle spectrometer (MIRES)	8 – 18 4.5 – 28 (goal)	3″ slit length 10″ imaging	5000-100000	 Origin of stellar masses Accretion and outflows around protostars Evolution of gas in protoplanetary disks
	Planet Formation Instrument (PFI)	1 – 2.5 1 – 5 (goal)	1'' outer working angle, 0''.05 inner working angle	R≤100	 10⁸ contrast ratio (10⁹ goal) Direct detection and spectroscopic characterization of exoplanets
	Near-IR AO-fed echelle spectrometer (NIRES)	1 - 5	2″ slit length	20000-100000	 IGM at z > 7, gamma-ray bursts Local Group abundances Abundances, chemistry and kinematics of stars and planet-forming disks Doppler detection of terrestrial planets around low-mass stars
	High-Resolution Optical Spectrometer (HROS)	0.31 – 1.1	5″ slit length	50000	 Doppler searches for exoplanets Stellar abundance studies in Local Group ISM abundance/kinematics IGM characteristics to z~6
3	"Wide"-field AO imager (WIRC)	0.8 – 5.0	30" imaging field	5-100	Precision astrometry (e.g., Galactic Center) Resolved stellar populations out to 10 Mpc

With also a very complete instrumentation

GMT: Giant Magellan Telescope

Consortium of US universities + foreign partners:

- Carnegie, Chicago, Harvard, Smithsonian, Texas, Arizona.
- Australia (ANU and AAL), Korea (KASI), Brazil, Chile.
- 7 x 8-m mirrors on the same structure: 21-m diameter (equivalent).
- Site: Las Campanas, Chile.
- Completion: 2029.
- Cost: ~ 1000 M\$

With also an attractive instrumentation

	Instrument	Function	λ range (microns)	Resolution	FOV
	GMACS	Optical Multi-Object Spectrometer	0.35-1.0	250-4000	64-200 arcmin^2
	NIRMOS	Near-IR Multi-Object Spectrometer	1.0-2.5	Up to ~4000	49 arcmin^2
	QSpec	Optical High Resolution Spectrometer	0.3-1.05	30K 1" slit	3" + fiber mode
	SHARPS	Optical High Resolution (Doppler) Spectrometer	0.4-0.7	150K	7 x 1" fibers
オ	GMTNIRS	Near-IR High-Resolution Spectrometer	1.2- 5.0	25K-100K	Single object
	MIISE	Mid-IR Imaging Spectrometer	3.0-25.0	1500	30"
	HRCam	Near-IR AO Imager	0.9-5.0	5-5000	30"
7	GMTIFS	NIR AO-fed IFU	0.9-2.5	3000-5000	3"

In a nutshell

Type of Instrument	GMT	ТМТ	E-ELT	
Near-IR, AO-assisted Imager + IFU	<u>GMTIFS</u>	IRIS	<u>HARMONI</u>	
Wide-Field, Optical Multi-Object Spectrometer	<u>GMACS</u>	<u>WFOS</u>	MOSAIC- HMM	
Near-IR Multislit Spectrometer	NIRMOS	<u>IRMS</u>	MOSAIC- HMM	
Deployable, Multi-IFU Imaging Spectrometer		IRMOS	MOSAIC- HDM	
Mid-IR, AO-assisted Echelle Spectrometer		MICHI	METIS	
High-Contrast Exoplanet Imager	TIGER	PFI	ELT-PCS	
Near-IR, AO-assisted Echelle Spectrometer	GMTNIRS	NIRES	HIRES	
High-Resolution Optical Spectrometer	G-CLEF	HROS	HIRES	
"Wide"-Field AO-assisted Imager		WIRC	MICADO	

The transient sky

All these facilities have identified the study of the transient sky in their scientific cases.

Understanding and Using the Gamma-Ray Bursts of course:
•Understanding Progenitors of the GRBs.
•Probing the High-z Universe with the GRBs.
•Measuring the galaxy luminosity function.
•Etc.

But also:

Studying Tidal Disruption Events.Identifying the Gravitational-Wave Sources.Etc.

Probing the High-z Universe with the GRBs.

- Possible to quantify the ionization gas content through simultaneous measurement of metal absorption lines and modelling the red-wing of Ly- α to determine host HI column density.
- Potentially possible even several days post-burst.

The build-up of metals, molecules and dust

• An efficient way to map metallicities and abundance patterns across the whole range of star forming galaxies in the early Universe, including those at the very faint end of the LF

Detecting undetectable galaxies

- The faint-end of the galaxy luminosity function is a key issue for understanding the reionization era.
- But the faint-end of the LF steepens with redshift: $\alpha \sim 2$ at z > 6.
- Expected magnitudes fainter than m_{*}~ 30: at the limit of what is reachable with the 30m class telescopes.

HST very deep imaging illustrating the difficulty to detect the host galaxies.

In summary

Theseus will be in operation when the largest telescopes, ELT, TMT and GMT, are fully operational:

 The first generation of instruments (imagery&spectroscopy) is well adapted to the Theseus scientific motivation.

The unique combination of these observations will allow us to better understand the earliest days of the Universe:

- Measuring the galaxy luminosity function.
- Monitoring the cosmic metal enrichment and the chemical evolution to early times.
- Identifying the reionisation cosmic origin.
- Etc.

But beware, we must not forget that many telescopes, even if they are « smaller » (VLT, Keck, etc.), will always be in operation and probably easier to access.