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Spatial distribution of GRBs

Are the spatial distribution of GRBs homogeneous and isotropic?

Giant GRB ring at z≈0.8 (Balázs et al., 2015 and 2018)
I from 21 GRBs with redshift between 0.78 and 0.86
I 9 GRBs form a 1.72 Gpc diameter ring-like structure
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Redshift measurements
Overview

Two types of redshifts:
I Spectroscopic: accurate, longer measurement
I Photometric: easier measurement, bigger uncertainty

Number of measurements:
I Spectroscopic: ≈ 500
I Photometric: ≈ 100

Positions errors of different instruments (i.e.):
I Fermi GBM: few degrees
I Swift BAT: few arcmins

The exact source is difficult to identify for the ground-based follow-up
observations
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Redshift measurements
Afterglow

Afterglows’ time evolution:
I X-Ray
I UV and optical, i.e. Swift – UVOT
I IR, i.e. Theseus – IRT (see Poster by L. G. Balazs)
I Radio

Lyman limit at 912Å is almost completely absorbed

Lyman-break shifting (’detection limit’):

Wavelength Wavelenght range Redshift
UV 0.1− 0.4µm 2− 3

Optical 0.4− 0.7µm 3− 7
NIR 0.7− 2.5µm 7− 26
MID 2.5− 20µm 26→
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Redshift measurements
Statistics

Swift GRB Statistics:
I 1443 GRBs detected
I 1168 X-Ray (XRT) measurements
I 454 UVOT measurements

The frequency of redshift detections of Swift GRBs (spring of 2020):
I 1346 Swift GRBs
I 408 ground-based spectroscopic redshift measurements
I From which only 22 did not have UVOT detections (under 6%)

Precise localizations =⇒ spectroscopic redshift measurements
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Redshift measurements
Changing over time

The regressive tendency is clearly seen from the peak after the launch-
ing of Swift. In a few years redshift measurements will be made for only
a few GRBs every year (see Poster by I. Horvath).
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Machine learning for redshift estimation

Measured physical parameters depend on distance, but the impact
I is relatively smaller than the GRB’s own variability
I is a complex mechanism
I is hard to specify with simple statistical methods

Machine learning may help amplifying the underlying subtle relations
between the observed physical parameters and the distance.

We used two procedures:
I Random Forests
I Gradient Boosted Trees (XGBoost)
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Machine learning for redshift estimation
Data

Data & Catalogs:
I Swift GRB Catalog
I UKSSDC catalog
I Own redshift catalog, data tables (i.e Jochen Greiner GRBs’

table), GCN reports, other found publications

We selected 20 parameters:
I γ-flux
I X-ray fluxes (early, 11hours, 24hours)
I UVOT parameters
I N(H)intrinsic (both of WT and PC observation mode)

Similar parameters will be available for Theseus (IRT is essential)
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Machine learning for redshift estimation
Redshift estimation

The correlation coefficient was 0.759±0.008 (Racz et al., 2017).
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Machine learning for redshift estimationt
Redshift classification

Besides the distance estimation we could separate GRBs into
distance ranges.

From the classification we obtained that it is possible to distinguish
the z<4 and z>4 GRBs with an almost 90% goodness of estimation.

We classified the GRBs without measured redshift and we found that
the group with z<4 contains comparable numbers of GRBs with
known and unknown redshifts. In the high-z case three times more
unmeasured GRBs were found than measured. This can imply that
the distance of GRBs above a given value can strongly reduce the
measurement of redshifts.

Number of cases z < 4 z ≥ 4
Measured (real) 231 22

Predicted (known) 195 58
Predicted (unknown) 242 152
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Machine learning for redshift estimation
Redshift classification

The distribution of high-z GRBs. It is shown that there are three times
more high-z GRBs in the population of objects with unmeasured
redshifts. (Racz et al., in prep.)
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Summary

I Position determination from high precision observation is
essential

I Lyman-break cutoff, Optical: z ≈ 5, NIR: z ≈ 10

I The number of ground-based redshift measurements are
decreasing year by year

I Theseus IRT will be a good solution

I We obtained promising results for redshift estimation by machine
learning

I It is possible to distinguish the z<4 and z>4 GRBs with an almost
90% goodness of classification
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