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ALL-SKY COVERAGE + PRECISE GRB LOCALIZATION IS NEEDED FOR

EFFICIENT MULTI-MESSENGER ASTRONOMY
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CAN NANOSATELLITES (CUBESATS) ACHIVE IT?

Standard CubeSat sizes

: 1U 2u 3u 6U

Cubesats Applied for MEasuring and LOcalising Transients (CAMELOT) mission concept

Advantages:

* Affordable by single single
university or company

* Fast development time (~year)

®* Many launch opportunities as a
piggyback payload with larger
missions

12U

Source: Radius Space
www.fadmsspace.cum

Satellite 3U CubeSat

platform

Target orbit |9 satellites constellation in LEO in * Equipped with GPS for precise
three orbital planes time synchronisation

Payload |Four 150x75x5 mm? Csl scintillators | * Inter-satellite (Indium NEXT)
read out by Multi-Pixel Photon communication equipment for
Counters (MPPCs) rapid data download

* All sky coverage with a large

Goal Degree-scale timing-based .
9 9 effective area

localization with a similar
sensitivity to the Fermi-GBM




CAMELOT:

DETECTOR DESIGN

* To maximize effective area the Csl
scintillator detectors read out by Multi-Pixel
Photon Counters (MPPC) will occupy two
lateral extensions
(8.3cmx15cm x 0.9 cm x 4)

®* The large and thin detectors with small
readout area are challenging

®* The system provides a large light yield,
compact readout area and relatively low
operational voltage.
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https://ui.adsabs.harvard.edu/abs/2018SPIE10699E..2PW/abstract
https://ui.adsabs.harvard.edu/abs/2018SPIE10699E..64O/abstract

CAMELOT:

BACKGROUND AND SNR STUDY

Full Monte Carlo simulation in Geant4 including optical photon tracking, satellite structure and expected
X-ray/particle background (Galgoczi+ 2021, arXiv:2102.08104).

» Code available at GitHub (github.com/ggalgoczi/szimulacio/tree/master/Bck_4.10.6)
* Outside SAA and for latitude < 50°, i.e. in regions favorable for detection of gamma-ray transients
» Typical sGRB, IGRB, TGF, SGR spectra used based on Fermi/GBM, AGILE, and Konus measurements

* If we have a polar orbit at 500 km then study of trapped particle models (Ripa+ 2020) and measurements
by Lomonosov/BDRG detectors suggest ~60% duty cycle

optical photons in detectors

Different background components at 500 km Different transient sources
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https://ui.adsabs.harvard.edu/abs/2021arXiv210208104G/abstract
https://github.com/ggalgoczi/szimulacio/tree/master/Bck_4.10.6
https://ui.adsabs.harvard.edu/abs/2020SPIE11444E..3PR/abstract

TIMING BASED LOCALIZATION OF TRANSIENTS

» Localization by photon arrival time (triangulation) . Crossjcor.relatlofnGaF?;Ié/ss foro(laveryll'
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1PN deals with: S T I R e
- Different clock accuracy from one s/c to another
- Various time resolutions ——pp Fleet of the same der;cectors at e ~1 deg (1o) accuracy for bright sGRB
- Uncertainty in s/c positions for far-Earth s/c LEO can overcome these * ~30 sGRB/year localized < 1 deg

- Different energy responses of various detectors problems, but baseline is shorter


https://ui.adsabs.harvard.edu/abs/2020SPIE11454E..1ZO/abstract
https://ui.adsabs.harvard.edu/abs/2018SPIE10699E..64O/abstract

WHERE DO WE STAND?

» We performed a feasibility study and developed the detector concept.
* We developed a GRB detector for CubeSats, which we intended to test on a high-altitude balloon.

e Up to 30-38 km

® 6-7 hours of flight

* Relatively easy to launch

® Possible launch site in Slovakia
—_Hr - < _ * 3D printed gondola

* Spin-off: new IR sensor based attitude
determination

* Demonstration mission with a smaller sized detector on 1U CubeSat - GRBAIlpha - was launched this Monday!
* Demonstration mission with two smaller sized detectors as secondary payload on 3U CubeSat - VZLUSAT-2 - will be launched in

summer 2021.



GRBALPHA

1ST DEMO MISSION

» Small size of scintillator (75x75x5mm3 ), readout by 8 MPPCs, for 1-U platform but the same basic concept to CAMELOT

2.5mmt Pb shield only around
the MPPC to reduce the
radiation dose

75x75x5mm?3 Csl scintillator

Nnclosed by Immt Al casing

CsI(TI) scintillator

S0

* \We estimate the photon
numbers based on the detector
response of GRBAIpha and the
flux distribution of Fermi-GBM
GRBs

®* 10 % of Fermi-GBM GRBs
(both long and short) can be
detected by GRBAIpha (~10-20
GRBs/year)
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GRBALPHA
1ST DEMO MISSION

e 8 MPPCs on a board are attached to the crystal by optical glue DOWSIL93-500
e Detector is wrapped by optically thick Du

oy s O Assembled detector with PbSb3
DuPont Tedlar TCC15BL3 allow to reduce MPPC degradation
wrapping by protons

Thermal & vacuum test



https://ui.adsabs.harvard.edu/abs/2020SPIE11444E..4VP/abstract

GRBALPHA LAUNCH

https://grbalpha.konkoly.hu/

* Assembled and shipped to Russia
 Launched on Monday from Baikonur by Soyuz-2 to 550 km SSO, March 22, 2021
* Detections by radio amateurs at 437.025 Mhz, see SATNOGS
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Contact using GS in CZ, SK

Sat. and detector respond to
ground commands

1st packets from sat.

Sat. and payload HK:
GRBALPHA CW Beacon detector temp. (16°C); CPU,

batt. voltages and currents;
info. from sun-sensors etc.

frequency-

Credit: Satou Tetsurou (JAOCAW)


https://network.satnogs.org/observations/?norad=99722&page=4
https://grbalpha.konkoly.hu/

VZLUSAT-2

2ND DEMO MISSION

* VZLUSAT-2 is a technology mission with an earth observing camera as a primary payload
developed by Czech Aerospace Research Centre
® Two detectors (75x75x5mm?) as a secondary payload

Compact analog electronics
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« A simple CSA (LF356)(+ shaping arglplifier (LM6142) e FPGA-ICE40HX8K-BG121
- , « 12-bit sampling ADC (LTC2315-12
| - HV supply module (LT3482) controlled by DAC * MCU - STM32F072CBT7 ARM Cortex-M0
Here are our detectors

under solar panels



VZLUSAT-2

2ND DEMO MISSION

Arbitrary unit

241Am and 133Ba spectrum of ch0
q 24
i tAm 60 keV Dynamic range:
~10-600 keV should be
verified by further energy
calibration
133Ba 80 keV

’ ‘ ! Compton edge of 256-
11%Ba 30 keV S 133Ba 256-356 keV complex
“LAM 30 ke,
escape line v

Test with radioisotopes sources
showed lines from 241Am and 133Ba

Satellite was assembled, went
through environmental testing and
was shipped to USA to be launched
in summer 2021 by SpaceX
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SUMMARY

* Constellations of CubeSats providing both all-sky 4
coverage and localization capability will be highly
complementary to large missions monitoring the high
energy sky

* The orbital demonstration mission of our first GRB detecting
CubeSat was launch, the second one is expected to be
launched in summer this year

* A close collaboration between GRB detecting CubeSats will
leverage the advantages of nano-satellites and different
detector concepts - such close collaboration between
missions is key for the success of global networks of GRB
detecting nanosatellites

Werner et al., Proc. of SPIE 10699 (2018) id.106992P
Ohno et al., Proc. of SPIE 10699 (2018) id.1069964
Pal et al. arXiv: 180603685
Torigoe et al. NIMPA 924 (2019) 316
Ripa et al. AN 340 (2019) 666
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