# HiZ-GUNDAM

High-z Gamma-ray bursts for Unraveling the Dark Ages and Extreme Space Time Mission

# Daisuke YONETOKU (Kanazawa University) HiZ-GUNDAM working group

- Mission Concept has been approved by ISAS/JAXA
- Working group is in Pre-Phase-A
- Target Launch is the late of 2020s

## HiZ-GUNDAM : Promotion of Time Domain/Multi-messenger Astronomy

# Key Science 1: Exploration of early universe with GRB

z = 8.8 (+1.7, -1.4)



Selection of High-z GRBs, Rapid spectroscopic obs. with large area telescopes

(1) GRB rate at z > 7
(2) Cosmic reionization history
(3) First heavy metals
(4) Survey of Pop-III GRBs

## Key Science 2: Multi-Messenger Astronomy



Formation

We timely contribute MM-Astronomy after achieving design sensitivity of GW facilities.

- (1) High energy phenomena associated with GW
- (2) Confirmation of existence of relativistic jet, and statistical studies
- (3) Energy transition from
   Jet → Cocoon → Kilonova/Macronova
   from X-ray to optical/NIR observation
- (4) Diversities of kilonova/macronova

# **High-z** Gamma-ray bursts for Unraveling the Dark Ages Mission

#### Mission Aim: Strong Promotion of

### "Time Domain" & "Multi-Messenger Astronomy".

Key Science1: Probing the Early Universe

- Detection of high-redshift GRBs (9 < z < 12)</li>
- Probing the reionization history and first metal elements

Key Science2: Progress of Gravitational Wave Astronomy

- Localization of X-ray transient and macronova associated with GW
- Energy transition from jet cocoon macronova

### **Observation Strategy**

- (1) Discovery of high-energy transient with Wide Field X-ray Monitor
- (2) Automatic/Comprehensive follow-up with Near Infrared Telescope
- (3) Sending Quasi-Realtime Alert Messages
- (4) Spectroscopy with Large Area Telescopes for selected events

#### Wide Field X-ray Monitor

#### Near Infrared Telescope

| Items                 | Parameters           | Items                   | Parameters                        |         |         |         |
|-----------------------|----------------------|-------------------------|-----------------------------------|---------|---------|---------|
| Energy band (keV)     | 0.4–4 keV            | Aperture size           | 30 cm                             |         |         |         |
| Field of View         | ~ 1.2 str (6 units)  | Field of view           | 34 arcmin ×34 arcmin              |         |         |         |
| Sensitivity           | 1e-10 (erg/cm2/s)    | Integration time        | 10 minutes (2 minutes x 5 frames) |         |         |         |
|                       | For 100 sec exposure | Observation Band (µm)   | 0.5-0.9                           | 0.9-1.5 | 1.5-2.0 | 2.0-2.5 |
| Point Spread Function | 3 arcmin             | Limiting Magnitude (AB) | 21 /                              | 21.2    | 20.0    | 20.7    |
| Angular accuracy      | ~ 60 arcsec          | 10 min exposure, S/N=10 | 21.4                              | 21.5    | 20.9    | 20.7    |

Wide Field X-ray Monitor

- Lobster Eye Optics
- CMOS imaging sensor

#### Near Infrared Telescope

- Offset Gregorian Optics
- simultaneous 4-band photometry

# Wide Field X-ray Monitor



### Lobster Eye Optics (Micro Pore Optics)



Digital Electronics Board CMOS or pnCCD Image performance with X-ray beamline

| Items                 | Parameters                |  |  |
|-----------------------|---------------------------|--|--|
| Energy band (keV)     | 0.5 – 4 keV               |  |  |
| Telescope type:       | Lobster Eye Optics        |  |  |
| Module aperture size  | 192 x 192 mm <sup>2</sup> |  |  |
| Number of module      | 24                        |  |  |
| Field of View         | 1.0 str (in total)        |  |  |
| Focal length          | 300 mm                    |  |  |
| Focal plane detectors | CMOS array                |  |  |
| Number of CMOS        | 24                        |  |  |
| Sensitivity           | ~ 1e-10 (erg/cm2/s)       |  |  |
|                       | For 100 sec               |  |  |
| Point Spread Function | ~ 3 arcmin                |  |  |





(Left) Digital Electronics Board (BBM) for smaller CMOS (GSENSE 400)(Right) Focal Image Obtained at 30m X-ray beamline

# GPIXELCMOSs (One of the candidates)

- Back Side Illuminated type CMOS
- Performance Evaluation Tests
- Radiation Tolerance Tests





|                   | GSENSE 400BSI               | GSENSE 6060BSI              |
|-------------------|-----------------------------|-----------------------------|
| Active image size | 22.5 x 22.5 mm <sup>2</sup> | 61.4 x 61.4 mm <sup>2</sup> |
| Pixel size        | 11 x 11 um <sup>2</sup>     | 10 x 10 um <sup>2</sup>     |
| # of pixels       | 2048 x 2048                 | 6144 x 6144                 |
| Shutter           | Rolling                     | Rolling                     |
| Frame rate (STD)  | 48 fps                      | 26.4 fps                    |
| Power             | <0.650 W                    | 5.4 W (full speed)          |
| # of LVDS pairs   | 8                           | 50                          |

# X-ray Performance (400BSI)

@ 0 degC, 0.1sec exposure





- Successfully measured 1.48 keV line
- Single pixel event : depletion layer Multiple pixel event : neutral layer
- Single/Multi ratio depends on the resistivity of epitaxial wafer.

## Radiation Tolerance Test for CMOS (400BSI)





#### X-ray Beam Line Experiment for Lobster Eye Optics Single Piece LEO (Photonis) 10 **Beam Line Experiment** Center + Cross (Experiment) Center (Experiment) Image sensor Center + Cross (Simulation) LEO Effective Area (cm<sup>2</sup>) Center (Simulation) X-ray 1 0.1 LEO **Focal Plane** 0 1 2 6 8 5 7 3 4 Energy (keV) X-ray test at 30 m X-ray beam line Consistency check with GEANT-4 simulation X-ray Effective area (Photonis LEO) Center Only $: 1.37 \text{ cm}^2 @ 1.5 \text{ keV}$ **GEANT-4** Simulation Cross + Center: 3.49 cm<sup>2</sup> @ 1.5 keV

8



# Simulations: Photometric Redshift

Afterglow spectrum is power-law with  $0 < \beta < 1$  ( ~ 95%), and  $\beta = 0.5$  is used. Red: Input model (power-law with Ly- $\alpha$  drop) Blue: Fitting model (power-law with dust extinction)





Photo-z coverage:

5 < z < 12 for m < 20.5 mag(AB)

Accuracy of photo-z:

 $\Delta z \sim +/- 0.1$  for 19.5 mag (AB)  $\Delta z \sim +/- 1$  for 20.7 mag (AB)

 We can observe high-z afterglow candidate up to z < 19.5 even if we can not distinguish between real high-z or dusty GRB.



# **Overview of Mission Payloads**



The size of mission payload: 890 mm x 950 mm (base frame) x 1,220 mm (height) The total mass is ~200 kg.

Structural analysis using the finite element method The number of contacts : 331,043 The number of elements: 345,618 The natural frequency of primary mode: 45.23 Hz (X-axis), 65.45 Hz (Y-axis), and 108.96 Hz (Z-axis).

We confirmed that vibration tolerance was sufficient at all points.

# **Nominal Operation**

Pointing 560 sec

Maneuver 150 sec

## Satellite orbit: Sun-synchronous polar orbit (Twilight)

- (1) 120 degrees of solar separation angle and50 degrees of moving forward
- (2) Keeping the inertial pointing during 560 sec HiZ-GUNDAM monitors X-ray transients
- (3) The satellite slews to the next nominal pointing

Optimized for follow-up observations with the NIR telescope. HiZ-GUNDAM can perform it for 97% GRBs discovered by itself, and make sure of more than 10 minutes follow-up time.

Solar

# **Detection Sensitivity and Expected Event Rate**



# Summary

- HiZ-GUNDAM will strongly promote (1) exploration of early universe (2) multi-messenger astronomy
- The mission concept was selected as a candidate of future project of ISAS/JAXA.
- The launch target is the late of 2020s.



- We will have two kinds of mission payloads

   (1) The wide field X-ray monitor with LEO and focal imaging sensor
   (2) The near infrared telescope with aperture size of 30 cm
- Satellite orbit is selected as the twilight line of the sun synchronous polar orbit.
- We may also contribute to the follow-up observation in 2.0 2.5 um for GRBs found by THESEUS.