

The Extragalactic High-energy Transients

Hui SUN Einstein Probe Team NAOC, China

Collaborators: Bing Zhang (UNLV), Weimin Yuan(NAOC), Zhuo Li(PKU), Ye Li(PKU), Binbin Zhang(NJU), Yongquan Xue(USTC), Franz. E. Bauer(PUC)

2021 THESEUS Conference

In this talk:

Well-known" extra-galactic high-energy transients
 Models of event rate density and luminosity function
 Simulations by Einstein Probe

X-ray transients powered by magnetar from binary neutron star merger

 \diamond Models

♦ Candidates: CDF-S XT1 and XT2

Extra-galactic high-energy transient universe

The high-energy transient universe, especially in X-ray band, is rich, Yet to be explored.

Well-known ♦ Gamma Ray Bursts (Lowluminosity -, long-, short -) ♦ SN Shock Breakouts ♦ Tidal Disruption Events (X-ray) Emerging ♦ Magnetar powered X-ray emissions from binary neutron star merger

Transient characteristics

♦Transient, Explosive, High luminosity.

✦But relatively short duration, small amount of detections

	long GRB		short GRB	SN shock	Tidal disruption event
	LL-IGRB	HL-IGRB		breakout	/JETTED TDE
luminosity	10 ⁴⁶ -10 ⁴⁹ erg/s	10 ⁴⁹ -10 ⁵⁴ erg/s	10 ⁴⁹ -10 ⁵⁴ erg/s	10 ⁴³ -10 ⁴⁶ erg/s	10 ⁴² -10 ⁴⁵ /10 ⁴⁷ -10 ⁴⁸ erg/s
duration	25-~10005	2S-~10 ⁴ S	<25	10s to a few 1000s	peak ~ days to weeks, fade on years
event number	<10	~ 1200 ª 300 with z	~120 ^a 26 with z	2+12 New	~ 20 normal TDEs 3 jetted TDEs

note(a): in Swfit GRB catalog

Motivation for rate and LF study

Method

It is feasible to obtain the event rate density ρ_0 and the normalized luminosity function $\Phi(L)$ from the observations taking into account the selection effects.

 ♦ Star formation history for LGRB, SN SBO
 ♦ Supermassive black hole mass function evolution for TDE

♦ Merger model for BNS merger

e ations

$$N_{det} = \frac{\Omega T}{4\pi} \times \int \Phi(L) dL \cdot \rho_0 V_{\max}(L)$$

$$V_{max}(L) = \int_0^{z_{\max}(L)} \frac{f(z)}{1+z} \frac{dV(z)}{dz} dz$$

$$F_{\text{th}} = \frac{L}{4\pi D_L^2(z_{\max})k}$$

$$L) \simeq \frac{4\pi}{\Omega T} \frac{1}{\ln 10} \frac{1}{V_{\max}(L)} \frac{1}{L} \frac{\Delta N}{\Delta(\log L)} , \quad \rho_0(>L_t) = \int_{L_t} \rho_0 \Phi(L) dL$$

This method can be uniformly applied to the calculations of all type of transients.

 $\rho_0 \Phi($

2021 THESEUS Conference

Rate and LF for various tranisients

Detectability for Einstein Probe

	FXT (2 modules) Follow-up X-ray Telescope	Wolter-1 ty FoV: ~ 1 do band: 0.3- eff. area: 2 resolution	ype + CCD eg 10keV 2x 300cm ² @1keV 1: 30" (HPD)
	Type of transients		detections per year
http://ep.nao.cas.cn/	Tidal disruption event (TDE	Tidal disruption event (TDE)	
WXI (12 modules) Wide-field X-ray Telescope	TDE with jet		10 ?
lobster-eye MPO + CMOS	Supernova shock breakout	Supernova shock breakout	
, FoV: 3600 sq deg (1.1 sr)	Long GRB	Long GRB	
band: 0.5 – 4 keV	High-z GRB (z > 6)	High-z GRB (z > 6)	
eff. area: ~3 cm² @1keV	Short GRB		~ 10
resolution: ~ 5' (fwhm)	Low-luminosity GRB		~ 10

EP simulations of GRB at high redshifts

However, identifying them is challenging --> Theseus

Hui SUN 孙惠 2021/3/26

2021 THESEUS Conference

\diamond Expected results:

- Some detected at early/rising phase
- Well sampled X-ray light curves and spectra

EP Simulated redshift distribution of TDE

X-ray transients from BNS merger magnetar

Binary neutron star (BNS) mergers can produce short Gamma-ray bursts (SGRBs), bright kilonovae, multi-wavelength afterglows (eg.. GW 170817, Abbott et al. 2017, Metzger 2017...)

- The merger product of the BNS merger can be
 - ✦ black hole
 - ✦ short-lived hypermassive NS
 - long-lived NS (supramassive NS or stable NS)
- Depending on the NS equation of state and the mass of merger remnant.

see Sarin & Lasky 2020 for a review

EM counterparts for Magnetar case

The bright X-ray emissions are theoretically predicted lasting from several 100s to several 1000s.

♦ They are more like isotropic compared with on-axis SGRBs.

Early X-ray detection can play a unique role in differentiate the post-merger products.

From SGRB afterglows (EE+IP) to SGRB-less X-ray transients

- The short GRB data are consistent with the hypothesis that the post-merger product of an NS–NS merger is a supra-massive neutron star.
- The existence of such a long-lived post-merger product opens some interesting prospects in the multi-messenger era.
- ♦ However, these GRB-related X-ray transients are rare due to the beaming constraint of GRBs.

From SGRB afterglows to SGRB-less X-ray transients

The Chandra Deep Field South

LC is fully consistent with the X-ray transient powered by a millisecond magnetar.

HST/CANDELS F125W-band image

Xue et al. 2019

а

 $c_{0.5-7 \text{ keV}}$ (erg s⁻¹ cm⁻²)

Data/model

– S)/(H + S)

H) =

뜌

(b)

Unified magnetar model for CDF-S XT1 AND XT2

♦ The event rate densities for XT1 (~ 1100⁺²⁵⁰⁰₋₉₀₀ Gpc⁻³yr¹) and XT2 (~ 1400⁺³³⁰⁰₋₁₂₀₀ Gpc⁻³yr¹) are consistent with that of BNS mergers from GW 170817 (1540⁺³²⁰⁰₋₁₂₂₀ Gpc⁻³ yr¹, Abbott et al. 2017).

♦ It is implied that a fair amount of BNS leave a magnetar as a product, i.e. the M_{TOV} cannot be too small...

Gao et al. 2016

EP detectability of XT2-type X-ray transients

- detectable up to ~300Mpc (z~0.07), match LIGO/VIRGO horizon
- * expected rate: 2 40 per year (with possible joint GW detection)

- The event rate density and luminosity function are provided for references of detectability predictions.
- Wide field high-energy telescopes, like Einstein Probe and THESEUS, will largely increase the number of extragalactic high-energy transients.
- If a fair amount of BNS leave a magnetar, one can expect the increasing detections of the magnetar-powered X-ray transients.
- The unified models can also be tested by future observations.

Thanks !