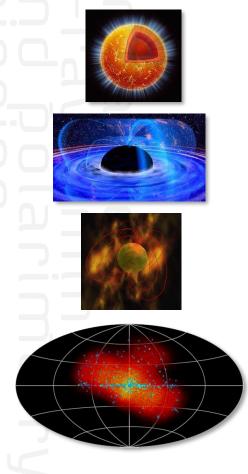
THE ENHANCED X-RAY TIMING AND POLARIMETRY (EXTP) MISSION

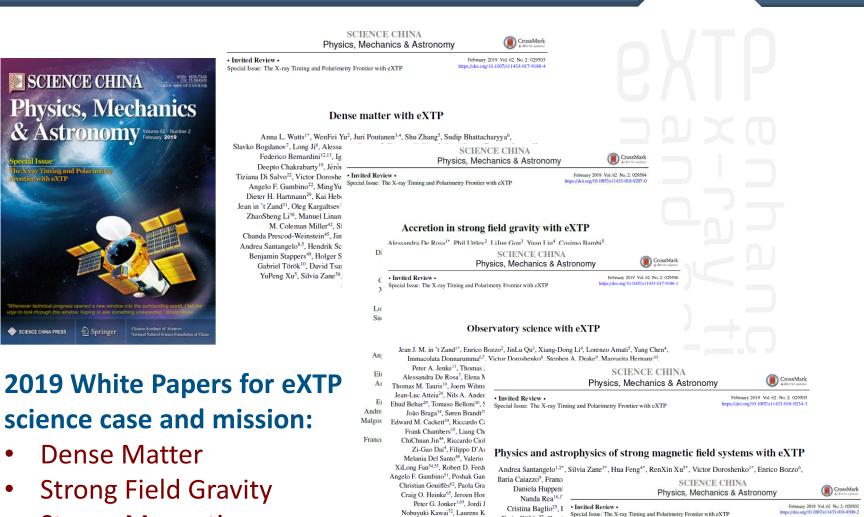
MARCO FEROCI

INAF/IAPS & INFN/RM2, ROME, ITALY

ON BEHALF OF THE EXTP CONSORTIUM



- A flagship X-ray observatory mission, being developed by the Chinese Academy of Sciences, with a large contribution by a European Consortium. ESA is studying a MoO participation.
- Currently in Phase B1. The launch date is planned in late 2027, for a minimum mission lifetime of 5 years (goal 8 years).
- eXTP is proposed as an observatory open to the worldwide scientific community. It is expected that the eXTP observing plan will be designed based on Core Program observations as well as on a Guest Investigator Program.


Study of matter under extreme conditions of gravity, density and magnetism. For the first time: simultaneous, high-throughput spectral, timing and polarimetry observations.

- Constrain the Equation of state of the supra-nuclear density matter in the interior of neutron stars.
- Accretion physics in the strong-field regime of gravity and tests of General Relativity in neutron stars and black holes over the mass scale.
- Physics of light and matter in the presence of ultrastrong magnetic fields in magnetars and X-ray pulsars.
- Multi-purpose observatory and wide-field monitoring for transients (and e.m. counterparts of GWs). Rapid follow-up.

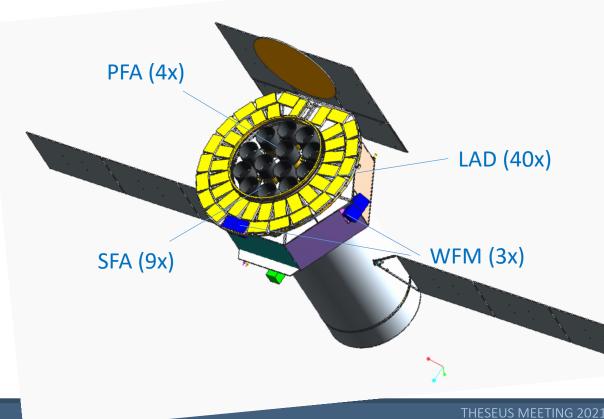
EXTP SCIENCE

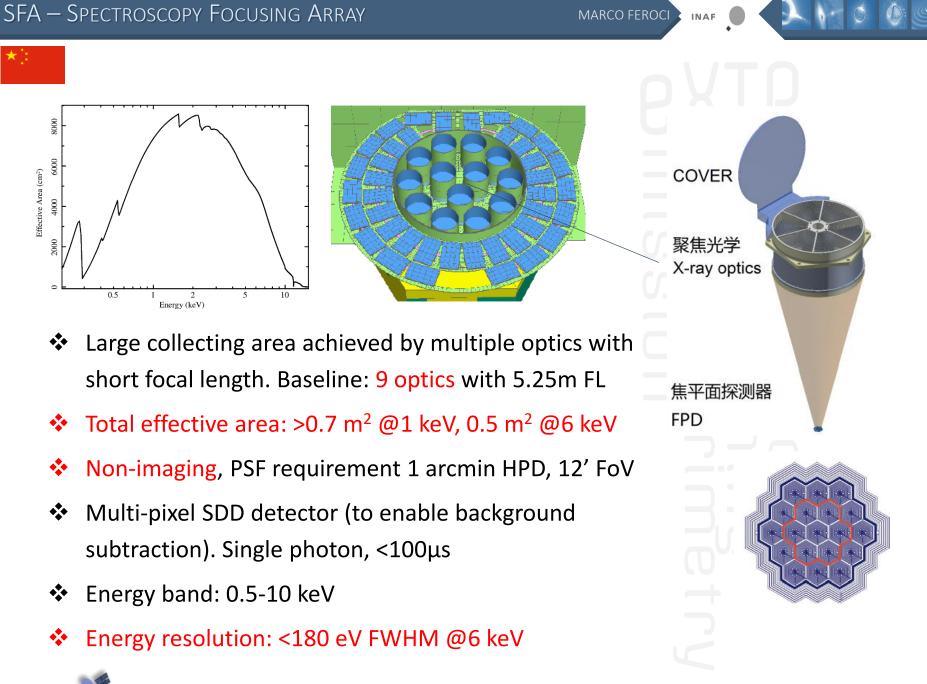
Devaky Kunneriath74, Gan

Ersin Göğüs32, Can (

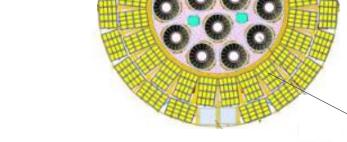
Romana Miku: Andrea Tier

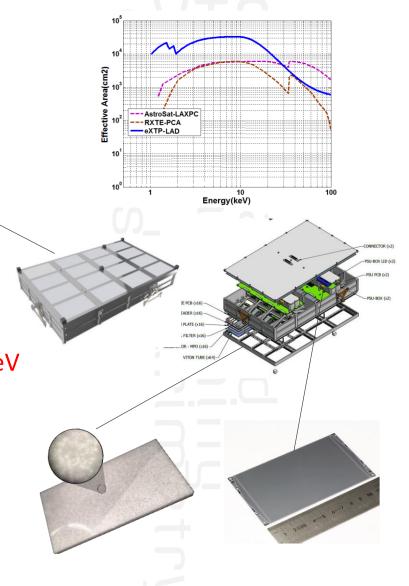
- Strong Magnetism
- Observatory Science
- Instrument and mission


The enhanced X-ray Timing and Polarimetry mission-eXTP

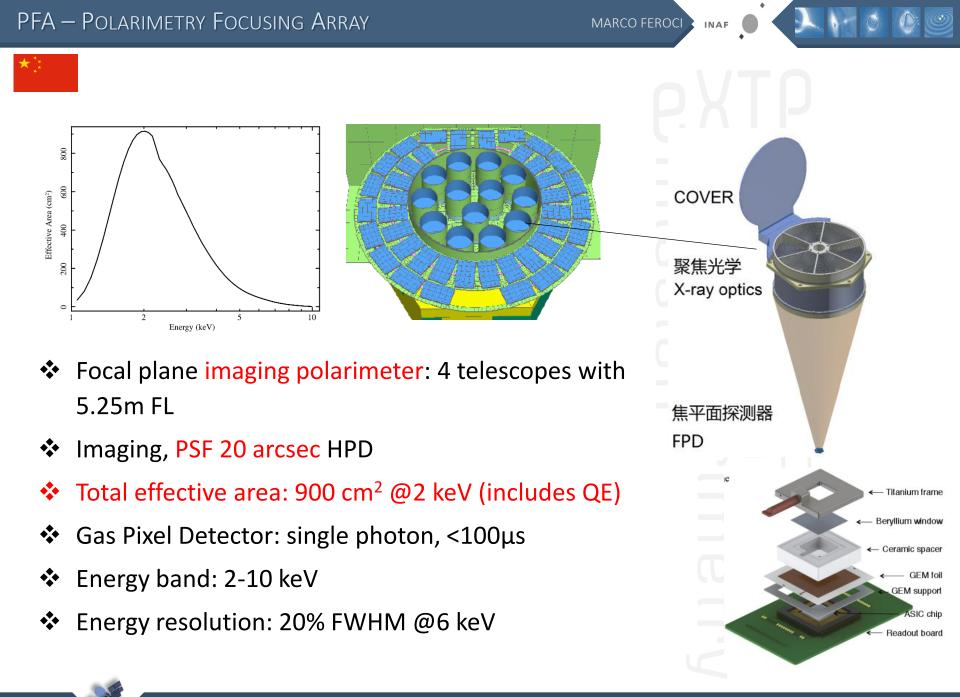

ShuangNan Zhang^{1*}, Andrea Santangelo^{1,2*}, Marco Feroci^{3,4*}, YuPeng Xu^{1*}, FangJun Lu¹, Yong Chen¹, Hua Feng², Shu Zhang¹, Søren Brandt¹⁵⁶, Margarita Hernant^{21,21}, Luca Baldini³, Enrico Bozzo⁶, Riccardo Campana³³, Alessandra De Rosa³, YongWei Dong¹, Yuri Evangelista^{3,4}, Vladimir Karas⁸, Norbert McGinger¹⁰, Aline Meuris¹⁰, Kirpal Nandra¹⁶, Teng Pan²¹, Giovanni Pareschi³¹, Piotr Orleanski³⁷, QiuShi Huang²², Stephane Schanne¹⁰, Giorgia Sironi³¹, Daniele Spiga³¹, Jiri Svoboda⁸, Gianpiero Tagilaferri³¹, Christoph Tenzer², Andrea Vacchi^{32,55}, Silvia Zane¹⁴,

Payload concept

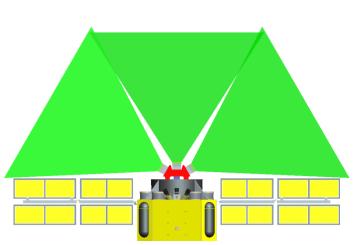

- > Multiple short focal-length modules for large telescope area
- Large-area collimated modules
- Polarimeter with imaging capability
- Wide field monitor



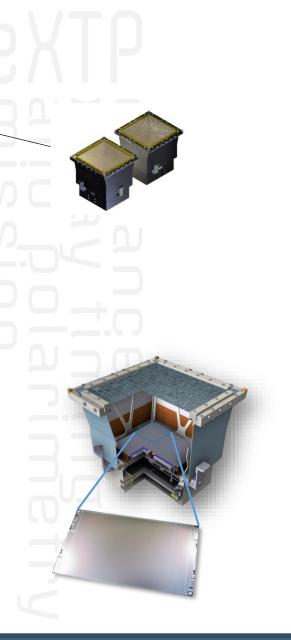
LAD – LARGE AREA DETECTOR



- Total effective area: 3.4 m² @8 keV
- Energy band: 2-30 keV
- Energy resolution: <240 eV FWHM @6 keV</p>
- Based on the LOFT/LAD design
- ✤ 40 Modules on support structure
- Collimated, large-area SDD detector.
 Single photon, <10μs

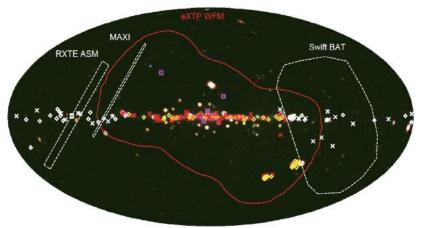

enhanced x-ray timing eXTP

WFM – WIDE FIELD MONITOR


MARCO FEROCI

14

- Field of View: 4 steradian (at 20% response)
- Imaging, <5 arcmin angular resolution, 1 arcmin PSLA</p>
- Energy band: 2-50 keV
- Energy resolution: 300 eV FWHM @6 keV
- Effective area: 80 cm² @6 keV (1 unit, on axis)
- 3 units (6 cameras)
- ✤ Same detectors as LAD (SDD). Single photon, <10µs</p>



MARCO FEROCI

10^{2} RXTE/PCA ASTROSAT/LAXPC XMM-Newton/EPIC-PN MAXI Athena/WFI 10^{1} Effective area [m²] RXTE ASM eXTP/SFA eXTP/LAD 10^{0} 10^{-1} 10^{-2} 20 30 50 100 2 3 5 10 Energy [keV]

Effective Area of SFA and LAD

Instantaneous FoV of WFM

- LAD: 6x RXTE/PCA, 35x XMM-Newton (*but collimated*!) + hard-X response
- SFA: 8x XMM-Newton (but multiple optics and larger PSF!).
 Limiting sensitivity ~10⁻¹⁴-10⁻¹⁵ erg cm⁻² s⁻¹
- PFA: 5x IXPE. Sensitivity: 1% MDP in 50ks for a 100 mCrab source
- WFM: Largest FoV ever, first time with 300 eV resolution. 3 mCrab in 50ks

Payload Summary

 $\mathbf{\hat{O}}$

	Payload	Parameter	Specification
Soft Response	SFA	Energy range	0.5-10 keV
		Effective area	>7000 cm ² @1 keV, >5000 cm ² @6 keV
		Energy resolution	<180 eV FWHM @6 keV
		FoV/HPD	12 arcmin / 1 arcmin
		Focal plane detector	Pixelated SDD (19 pixels)
Large area	LAD	Energy range	2-30 keV (extended: 30-80 keV for out-FoV)
		Effective area	34000 cm ²
		Energy resolution	<240 eV FWHM @6 keV
		FoV	1° (FWHM)
		Detector	Large area SDD (640 units, 40 Modules)
Polarization	PFA	Energy range	2-10 keV
		Effective area	>900 cm ² @2 keV (including QE)
		Energy resolution	1.2 keV FWHM @6 keV
		FoV/HPD	12 arcmin / 20 arcsec
		Focal plane detector	GPD (4 units)
Monitoring	WFM	Energy range	2-50 keV
		Energy resolution	300 eV FWHM @6keV
		FoV	>4 sr (at 20% of peak response)
		Angular resolution	<5 arcmin
		Localization accuracy	<1 arcmin
		Detector	Large area SDD

🗖 Sky visibility

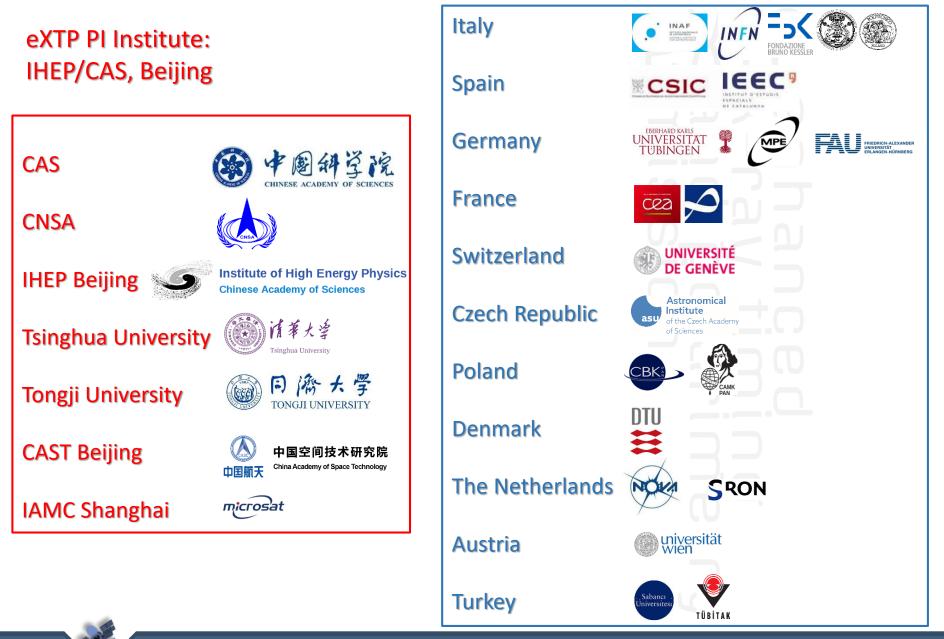
- >50% of the sky accessible by the narrow field instruments at any time (requirement) – current baseline: ~65% (-60°/+30°)
- ¼ of the sky instantaneously monitored by the WFM at any time

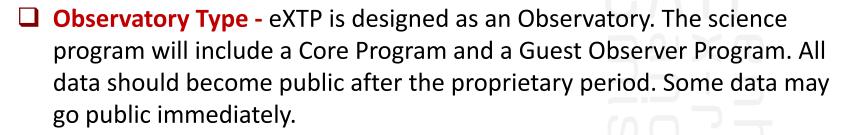
Transient events

- Onboard triggering and transient localization capability (WFM)
- Autonomous slewing (>3°/min minimum speed)
- Transmission of coordinates to the ground: Bei Dou (<30s seconds delay)

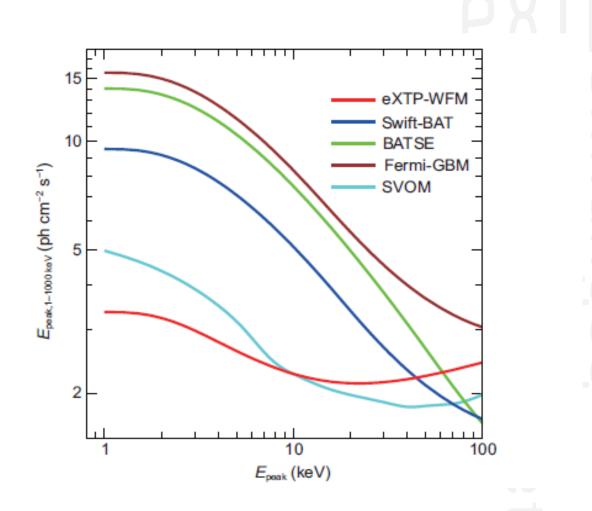
Targets of Opportunity

- Large allocation to ToO observations
- Fast uplink of ToO coordinates (Bei Dou)
- <12 hours execution time (requirement)</p>

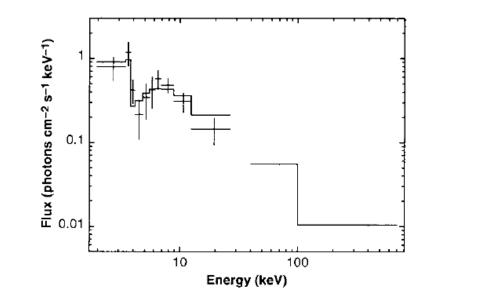


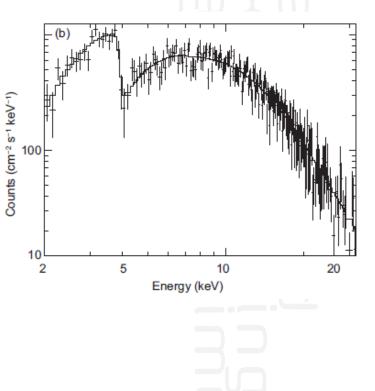


Parameter	Value	
Orbit	550 km, <2.5° inclination	
Launcher	Long-March CZ-5, from Wenchang	
Mass	4500 kg	
Power	3.6 kW	
Telemetry	1.7 Tb/day (X-band)	
Ground Stations	Colombo, Malindi, +	
Pointing	3-axis stabilized, < 0.01° (3-sigma)	
Sky visibility	50% (goal 75%)	
Mission Duration	5 years (goal 8 years)	
Launch date	2027	

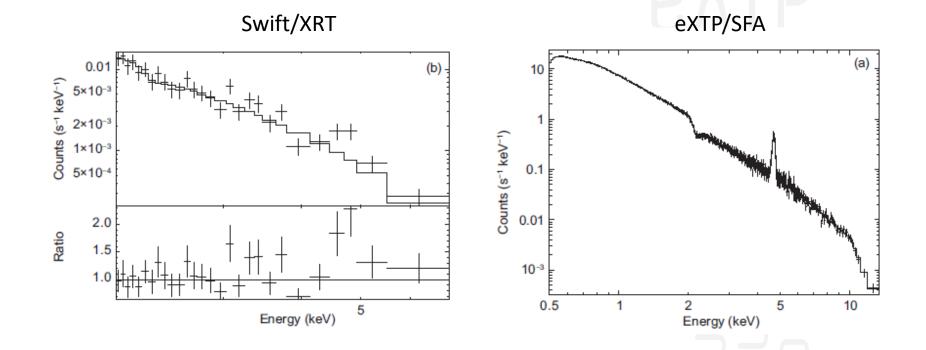

MARCO FEROCI

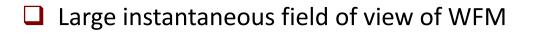
- European MS and China The share between European MS and China will be defined at agency level at a later stage (MoU). The science return is expected to be proportional to the contribution to the mission.
- ESA The potential ESA contribution to the mission is expected to be parallel to that of the individual Member States. It will give science access to a fraction of the observing time / data proportional to the contribution. This fraction will likely add on top of the science return to the individual MS.




enhanced, x-ray liming eXTP

THESEUS MEETING 2021




BeppoSAX/WFC (Amati et al.)

- Low-energy response and spectral resolution on prompt emission
- Onboard triggering, localization and real-time broadcasting
- Autonomous slew of the spacecraft
- □ High-throughput (~m²), spectral observations of early afterglow
- X-ray polarimetry of early afterglow

eXTP is conceived as a powerful and general observatory for compact Galactic and bright extragalactic objects to date. It will offer for the first time the most complete diagnostics of compact sources: excellent spectral, timing and polarimetry sensitivity on a single payload.

Four international Science Working Groups

(see, e.g., <u>http://www.isdc.unige.ch/extp/</u>):

- Accretion in Strong Field Gravity
- Dense Matter
- Strong Magnetism
- Observatory Science

The eXTP Team is open to contributions from the wide scientific community. More info at: <u>http://www.isdc.unige.ch/extp/</u>

References for the eXTP science and mission: special issue on

Science China, Volume 62, Issue 2, February 2019

