Masquerading Magnetar GRB 200415A

Oliver J. Roberts (on behalf of a greater team) oroberts@usra.edu

Universities Space Research Association / NASA Marshall Space Flight Center Huntsville, Alabama

Credit: NASA's Goddard Space Flight Center/Chris Smith (USRA/GESTAR)

<u>GRB 200415A</u>

- Triggered ASIM and the Inter-Planetary Network (IPN) on the 15th April 2020, triangulated to a 17 sq. arcmin. region centered on NGC 253 (Sculptor Galaxy), 11Mly away (D. Svinkin, K. Hurley et al. Nature, 2021)
- Chance coincidence with NGC 253: 1 in 230,000 (E. Burns et al., ApJL,2021)
- High Energy Emission (GeV) detection in the LAT (N. Omodei et al., Nature Astronomy, 2021)
- AAS Press briefing of these results: <u>https://www.youtube.com/watch?v=LjroNW7D-E4</u>

Nicola Omodei on behalf of the Fermi-Lat Collab. (2021): https://www.nature.com/articles/s41550-020-01287-8

Neil Gehrels Swift Observatory (Swift)

GRB 200415A detected offline using the Gamma-ray Urgent Archiver for Novel Opportunities (**GUANO**), a BAT pipeline to search for transients coincident with Gravitational waves.

All images courtesy of NASA

GRB 200415A

O.J. Roberts+ Nature 2021

British Broadcasting Company

Short Gamma-ray Burst (sGRB)

Goldstein, A., et al., ApJL 848 (2), L14 2017.

University of Warwick/Mark Garlick

Hurley, K., Boggs, S., Smith, D. et al. Nature **434**, 1098–1103 (2005)

Credit: NASA's GSFC / Chris Smith (USRA/GESTAR)

Credit: NASA's Goddard Space Flight Center/Chris Smith (USRA/GESTAR)

GRB 200415A Trivia (Observations)

Total energy emitted: 10⁴⁶ erg

- <u>All</u> nuclear tests: 10²⁵ erg
- **<u>10 quadrillion times</u>** more energy than Chicxulub impact (10³⁰ erg)

Total luminosity emitted: 10⁴⁷ erg/s

No modulated tail after the initial, 140 ms bright burst

Highest energy photon: 3 MeV in GBM

- A million times more energy than blue light (~3 eV).
- 50x more energy than a typical medical X-ray.

Variable, submillisecond changes in photon energy

Flare onset is 77 microseconds (>10x quicker than camera flash) Evidence of "starquakes" in neutron star crust No instrumental limitations due to the source No radio counterparts (VLA)

GRB 200415A Trivia (Observations)

Further Observations

Temporal binning = 8 ms

Interpretations

- Energy released by crustal fractures ejects hot plasma, like a photon torpedo...
- MeV-band emission: Relativistic outflow (>0.98c) that is initially, highly opaque.
 - $L_{iso} >> L_{edd}$ (10⁴⁷⁻⁴⁸ >> 10³⁸ erg s⁻¹), relativistic wind (Γ >> 1)
 - Wind transparency to QED pair-production by 3 MeV photons implies Γ ~ 6
- $\mathcal{F} \propto E_p^2$: Explained by relativistic Doppler boosting
- Spectral index α~0: Wind that is highly opaque to electron scattering; Compton cloud. Inconsistent with synchrotron GRB emission scenarios
- **Sub-ms spectral evolution:** Relativistic lighthouse beaming effect or relativistic-boosted wind acceleration and subsequent coasting/cooling
- 77 µs risetime: Extremely unlikely for a GRB.

CBS Television Studios

Universal Pictures

The flux, and spectral shape of GRB 200415A are **unusual/unlikely for a short GRB**, when compared to catalogs from previous space missions

Have we cracked it? No.

- Outstanding questions need more observations:
 - Do all giant flares produce GeV emission?
 - Reducing the uncertainty in the volumetric rate. $R_{MGF} = 3.8^{+4.0}_{-3.1} \times 10^5 \, Gpc^{-3}yr^{-1}$
 - Is the plasma ultra-relativistic? (1806-20 was 0.7c)
 - Confirm Flux and E_p decay trends, Flux αE_p^2 .
 - Do we expect photon energies >3 MeV?
 - Is sub-ms spectral evolution and sub-ms risetime (light curve variability) expected in short cosmological GRBs too or is this "purely" a MGF phenomenon?
 - What about the galaxies (SFR, metallicities, etc) that produce them?
 - Star-forming galaxies only?
 - QPOs in the tails of galactic giant flares
 - Rate of giant flares per magnetar: < 0.02 /yr Repeating MGFs/sGRBs?
 - Are 2% of detected short GRBs MGFs (0.3% of total GRBs)?
 - Many more...

What do we need to answer these? THESEUS.

- High timing resolution (10 µs):
 - Confirmation of sub-ms spectral evolution
 - Measurement of decay trends
- High sensitivity (10⁻⁹-10⁻¹⁰ erg cm⁻²s⁻¹ 5σ @ 1000s):
 - QPOs in galactic GFs, stats for extragalactic GFs.
- Precise localization capability (~10 arcmin for 6σ):
 - Independently localize to galaxies without IPN (SFR, etc).
- Wide FoV (177 x 77 deg²):
 - Validate rate estimates
 - Increasing sample size
- Broad spectral range (0.3 keV 20 MeV):
 - Full spectral coverage, higher E photons?
 - Ultra-relativistic plasma?

Expect a couple during mission lifetime (3.5 yrs) - See Doyle et al.

Credit: ESA

Other questions:

- How fast will the readout be, DPU?
- Data bandwidth, rates, telemetry, etc. for high time resolution data, triggering algorithms?

Credit: NASA's Goddard Space Flight Center/Chris Smith (USRA/GESTAR)

- 200415A is the clearest example yet of a giant flare from an extragalactic magnetar
- Unsaturated instrument spectra allow new discoveries to be made, opening a new front on studying the emission mechanism of these cataclysmic events.
- The instrumentation on THESEUS looks to be well-suited to future studies of these transients.

A Universities Space Research Association

Still

Link to the IPN paper: https://www.nature.com/articles/s41586-020-03076-9 Link to the GBM/GUANO paper: http://doi.org/10.1038/s41586-020-03077-8 Link to the Large Area Telescope paper: http://doi.org/10.1038/s41550-020-01287-8 Link to Populations paper: https://iopscience.iop.org/article/10.3847/2041-8213/ab

Link to the NASA press release (with video): https://www.nasa.gov/feature/goddard/2021/nasa-missions-unmask-magnetar-eruptions-in-nearby-galaxie