Variability in X-ray binaries with *Theseus*

V. Doroshenko, with E. Ambrosi, A.D'Ai, D. De Martino, T. Di Salvo, M. Erkut, V. Grinberg, G. Jaisawal, , A. Marino, S. Mereghetti, A. Papitto, A. Sanna, L. Sidoli, S. Tsygankov, S. Zane

THESEUS CONFERENCE 2021, VIRTUAL - 23-26 March 2021

The Zoo of X-ray binaries

• HMXBs

- Persistent:
 - Disk accretion, ROFL, incl. microquasars
 - Wind accretion, Supergiant X-ray binaries (SGXBs)
- Transients
 - Black hole transients (BHTs)
 - Be-X-ray binaries (BeXRBs)
 - Supergiant fast X-ray transients (SFXTs)
 - Very faint X-ray transients (VFXTs)
 - Gamma-ray binaries

• LMXBs

- Persistent sources (ROFL, disk accretion)
- transients
 - Soft X-ray transients (SXTs)
 - Ultracompact binaries (UCXBs)
 - Black hole transients (BHTs)
 - Accretion-powered millisecond pulsars (AMXPs)
 - X-ray bursters

• CVs

Zoo of it's own…

Another level of diversity:

- NS/BH?
- Magnetic field
- Pulsations
- Spin
-

The Zoo of X-ray binaries

- HMXBs
 - Persistent:
 - Disk accretion, ROFL, incl. microquasars
 - Wind accretion, Supergiant X-ray binaries (SGXBs)
 - Transients
 - Black hole transients (BHTs), see talk by Maria
 - Be-X-ray binaries (BeXRBs/pULX)
 - Supergiant fast X-ray transients (SFXTs)
 - Gamma-ray binaries
- LMXBs
 - Persistent sources (ROFL, disk accretion)
 - transients
 - Soft X-ray transients (SXTs)
 - Ultracompact binaries (UCXBs)
 - Very faint X-ray transients (VFXTs)
 - Black hole transients (BHTs)
 - Accretion-powered millisecond pulsars (AMXPs), talk by Domitilla
 - X-ray bursters
- CVs
 - Zoo of it's own

Another level of diversity:

- NS/BH?
- Magnetic field
- Pulsations
- Spin
-

Today focus mostly on time variability of transient NS XRBs accessible to *Theseus*

Be X-ray binaries (BeXRB)

- Traditional and easy target for all-sky monitors (fluxes up to 10⁻⁷ erg/cm²/s)
 - Quiescent luminosities 10³²⁻³⁵ erg/s
- X-ray pulsar + Be binary, accretion from circumbinary Be disk when NS crosses it
 - ~100 known (50 Galactic, and 50 in MC)
 - Regular or irregular outbursts
 - peak luminosities of up to 10³⁹ erg/s (normally below 10³⁷ erg/s)
 - Lasts several weeks to months
 - Rich phenomenology (spectra/timing)
 - Many unanswered questions (also in context of PULXs science)
 - Transient, bright, broadband: Theseus!
 - detailed studies with *Theseus* <u>alone</u>
 - Discovery of new sources
 - Monitoring of BeXRBs in MCs (to follow-up with other facilities)

Be X-ray binaries (BeXRB)

Swift J0243.6+6124 (Swift + MAXI + NICER)

Could be done with Theseus

Swift J0243.6+6124 (Swift + MAXI + NICER)

V 0332+53, BAT + NuSTAR

Doroshenko et al, 17

0 0

Theseus simulations: proton cycl

Accuracy of the 30 keV CRSE centroid in 70 ks

(Based on Cen X-3)

Energy (keV)

1.0

10.0

10ks simulation for 10⁻⁹ erg/cm²/s flux and CRSF at 17 keV

Cyclotron line and contin

- Currently 1 source with robustly measured 1 handful of candidates. To expand this small sample Theseus could (for bright sources)
 - measure photon index/color variations for Galactic BeXRB
 - CRSF variations are more tricky: only sources with CRSFs <~30 keV are feasible (~ 10 objects, but new transients with CRSFs must be the set of the set o
 - Follow pulse-profile/pulsed fraction variations
- Mostly interesting for new/exceptional outbursts/sources/regulatly with the bursting ones will likely be studied in great details before Theseus launch)

Be X-ray binaries (BeXRB)

- Rapid spin-up during outbursts
 - interaction of the disk with magnetosphere
- Possibility to measure orbital parameters
- Measure magnetosphere radius and magnetic field

$$I\dot{\omega}\propto\dot{M}\sqrt{GMR_m}$$

- Often the only way to assess the field (or accretion rate/distance)
 - Important to understand spin evolution of XRPs in binaries

Spin evolution in BeXRBs

- Low background makes SXI preferred instrument
- approx. equivalent to Fermi/GBM, but with better cadence (~1d vs 2-4 d for individual points if region is observed)
- Mostly relevant for new transients (orbit, accretion torques)
- Requires dt<0.1s and >0.1 counts/s (for pulsed fraction of ~50%)

Coverage of the Galactic sky by Theseus/SXI is highly non-uniform, MCs not covered

24 35 47 58 70 81 92

Effective exposure in days through 4 year survey

Coverage of the Galactic sky by Theseus/XGIS is non-uniform, MCs covered

124 138 152 166 180 194 208

Effective exposure in days through 4 year survey

But exposure maps don't tell the complete story!

XGIS (half-coded) coverage for V 0332+53

But exposure maps don't tell the complete story!

- Duration of BeXRB outbursts is comparable with the length of *Theseus* observing seasons
 - If you are lucky entire outburst with unprecedented cadence can be observed
 - detailed time-resolved spectral/timing analysis
 - perhaps some surprises (as was the case with V 0332+53, Swift J0243.6)
 - Most likely you are not:
 - We estimate ~10-20 outburst in total will be observed by *Theseus*
 - some examples for expected number of observed outbursts from known sources in 4 years: V 0332+53 ~ 0.5, 4U 1538-52 - 2; 1A 0535+262 - 2; IGR J16320-4751 - 4 ...
 - most of the BeXRBs will only be observed in quiescence
 - This might apply also to your science case
 - Probably not if the variability timescale is <days not weeks

Quiescence might also be interesting, however...

Propeller effect and cold disk accretion

Takeaway: will detect all outbursts in FOV, some sources in cold-disk state, Quiescence is unreachable with SXI, will be done by eRosita anyway

pULXs as transient X-ray binaries

Search for HLXs

Supergiant fast X-ray transients

ESA/AOES Medialab

Magnetiospheric gating vs clumpy wind

10ks simulation for 10⁻⁹ erg/cm²/s flux and CRSF at 17 keV

Supergiant fast X-ray transients

Name	SXI exposure (Ms)	N SXI (BAT/XRT)	XGIS exposure (Ms)	N XGIS
SAXJ1818.6-1703	5.2	2.1/694-2700	10.6	4.3
IGRJ08408-4503	6.9	2.0/667- 2596	15.6	4.5
IGRJ16328-4726	4.5	0.2/63-247	11.4	0.5
IGRJ17544-2619	6.4	4.0/1323- 5148	11.5	7.3
AXJ1845.0-0433	1.2	0.2/57-222	13.8	2.0
IGRJ16479-4514	5.2	6.2/2053-7990	11.4	13.6
IGRJ16465-4507	5.2	0.1/22-86	11.4	0.1
AXJ1841.0-0536	1.5	0.6/187-728	13.2	4.9
IGRJ18483-0311	0.8	0.7/215-836	14.7	12.6
XTEJ1739-302	6.6	5.1/1680- 6539	11.6	9.1
IGRJ16418-4532	5.1	1.0/326-1269	11.4	2.2

- SFXTs origin is currently unclear, largely because of observational challenges
 - low duty cycles imply these objects are studied with ASMs
- SXI has an order of magnitude better sensitivity plus large overall exposure time, so may be able to increase sample of SFXT flares observed and refine duty cycle estimates
- Predictions are hard, because we don't know now what happens at low Lx.
 Extrapolating XRT data thousands of flares will be detected
 - those are biased to outburst periods, so that's over-optimistic
- We'll only see that when *Theseus* flies!

Bursts and super bursts

Fig courtesy V. Suleimanov

4U 1724-307 in Terzan 2

Figure from Molkov et al (2000)

Cooling tail method to get EOS constrains from bursters

Conclusions

- *Theseus* is not an all-sky monitor if your sources are not "all-sky" like GRBs!
 - This makes it more sensitive than ASMs
 - With some luck, broadband capabilities and comparatively high sensitivity will allow detailed studies of bright sources with *Theseus* alone, but probably eXTP/WFM + pointed observations are more suitable for that
 - Same probably applies to BHTs (Maria's talk)
- Most suitable to study variability on short timescales in fainter sources. For XRBs this means that strong *Theseus* side is mainly (not exclusively)
 - For HMXBs:
 - variability of BeXRBs in quiescence
 - in particular, SFXTs are of interest: duty cycles and burst spectroscopy
 - detection of outbursts in MC BeXRBs (essentially all of them)
 - Monitoring of variability in ULXs to find pULX candidates
 - For LMXBs:
 - Transitional millisecond pulsars (Domitilla talk)
 - detection and time-resolved spectroscopy of bursts and super-bursts
 - Characterisation of VFXT population
- Last but not least: while *Theseus* will operate in parallel to eXTP where WFM is quite similar to XGIS for Galactic science. Both will, however, be complementary rather than competing due to different observing strategy