

Assessing the Capabilities of THESEUS to observe Giant Flares from Extragalactic Magnetars

Maeve Doyle¹, Lorraine Hanlon¹, Antonio Martin-Carrillo¹, Sandro Mereghetti² and Michele Lissoni²

¹School of Physics and Centre for Space Research, University College Dublin, Ireland ²INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Milano, Italy

SWG3 – Time Domain Astronomy

Magnetar Giant Flares (GFs)

- Characterized by an outburst of X-/ γ -ray radiation that is:
 - Extremely energetic ($\geq 10^{44}$ erg)
 - Short-lived (lasting tens to hundreds of milliseconds)
 - Spectrally hard ($E_{peak} \sim MeV$)
- Initial spike followed by longer-lived, lower-energy tail
- Peak luminosities (up to 10⁴⁸ erg/s) allow for detections from extragalactic distances
 - Initial spike resembles SGRB emission
- Rare, one-off (?) events
 - 3 known GFs, 4 candidates

(Elenbaas et al. 2017)

GF Population

- 3 GFs observed from known magnetars
 - GRB 790305B → SGR 0525-66 (LMC)
 - GRB 980827 → SGR 1900+14 (MW)
 - GRB 041227 \rightarrow SGR 1806-20 (MW)
- 4 extragalactic GF candidates identified through population-level searches of SGRBs
 - Current results suggest 1-8% of SGRBs are actually GFs
 - Observed to 4.5 Mpc
- Similar properties observed for both populations

E_{iso}: High isotropic energies ranging from 0.43 to 53 ×10⁴⁵ erg Durations: Initial spike rise times of ~ms and spike durations of 10 to <250 ms Spectra: Well-fit by a cut-off power-law, N(E) = $AE^{-\alpha} \exp[\frac{-(2-\alpha)E}{E_{peak}}]$, with E_{peak}~1MeV and α ~0

GF Rate

• The rate of GFs (R_{GF}) can be related to Star Formation Rate (SFR) as:

• Using the number of extragalactic GFs detected within \sim 5 Mpc and the evolution of SFR with volume, Burns et al. (2021) estimate

$$R_{GF} \sim 3.8 + 4.0 \\ -3.1 \times 10^5 / Gpc^3 / year$$

How many GFs will THESEUS detect?/Simulations

To what distance must the GF population be simulated?

Flux limits associated with 7σ detections for SXI, XGIS-X and XGIS-S

GF luminosities in the energy bands of THESEUS's instruments

Maximum detectable distance: ~36 Mpc (XGIS-S / GRB 051103)

How many GFs will THESEUS detect?/Simulations

How many GFs will THESEUS detect?/Simulations

Results (1/3): Detectable GFs

- Highest number of GFs detectable by XGIS-S
- Only a fraction of XGIS-S detected GFs also detectable by XGIS-X
- \sim O GFs detectable by SXI

Number (N) of simulated GFs detectable by XGIS-S

GF Prototype	$N\sigma$ > $\sigma_{ m thresh}$ (where $\sigma_{ m thresh}$ = 7)
200415A	1 - 23
070222	2-21
051103	4 - 40
070201	2 - 20

Results (2/3): Impact of energy range

- Current instrumentation should detect GFs to ~tens of Mpc (Burns et al. 2021)
- Spectral shape of GFs leads to fewer photons in the typical energy range used for triggering (50 – 300 keV)
- How does this impact THESEUS's detection capabilities?

GF ProtoType	$N\sigma > \sigma_{ m thresh}$ (where $\sigma_{ m thresh}$ = 7 and using max. value in N range)		% Undetected
	20 keV - 2 MeV	50 keV - 300 keV	
	(full XGIS-S range)	(triggering range)	
200415A	23	14	39 %
070222	21	14	33 %
051103	40	24	40 %
070201	20	14	30 %

30-40% of events

undetected with 7o threshold

Results (3/3): Effect of FoV

- 'Effective' FoV of XGIS considering sensitivity of the detector across the full FoV (2.2 sr) is approximated as ${\sim}1~{\rm sr}$
 - $1/4\pi \sim 8\%$ sky coverage

	$N\sigma > \sigma_{thresh}$
GF Prototype	(where $\sigma_{\rm thresh} = 7$)
	20 keV - 2 MeV
	(full XGIS-S range)
200415A	1 - 23
070222	2-21
051103	4 - 40
070201	2 - 20

GF Prototype	$N\sigma$ > $\sigma_{ m thresh}$
	(where σ_{thresh} = 7)
	20 keV - 2 MeV
	(full XGIS-S range)
200415A	0-2
070222	0-2
051103	0-3
070201	0-2

Conclusions

- This work shows that THESEUS/XGIS-S has the capability to detect a few extragalactic GFs
 - R_{GF} is uncertain
 - Several approximations made for simulations
- Potential to increase chances of detection, e.g.;
 - Ensure favorable energy ranges and timescales considered by at least some on-board triggering algorithms
 - More targeted approach to monitoring galaxies
- Importance of THESEUS to GF research:
 - Increase the population of known GFs
 - Allow for better constraints on R_{GF}

Future Work

- More representative simulations, e.g.;
 - Different spectral shapes, energetics, durations
 - Host galaxy distribution weighted by SFR
- Assess potential for follow-up observations
 - Host galaxy observations
 - Afterglow tail

Potential GF energetics distribution

Thank you for your attention! Questions?

Contact: maeve.doyle.1@ucdconnect.ie

